Ihmisaivot

Wikipediasta
Tämä on arkistoitu versio sivusta sellaisena, kuin se oli 14. marraskuuta 2016 kello 13.21 käyttäjän Savir (keskustelu | muokkaukset) muokkauksen jälkeen. Sivu saattaa erota merkittävästi tuoreimmasta versiosta.
Siirry navigaatioon Siirry hakuun
Ihmisen aivot

Ihmisaivot eli ihmisen aivot ovat päässä kallon sisällä sijaitseva keskushermostoa hallitseva elin, jonka päätehtävä on käsitellä aistien välityksellä saatua informaatiota siten, että ihmisen toimintakyky ympäristössään säilyy. Ihmisen tietoisuudella on vahva kytkös aivojen sähkökemiallisiin, fyysisiin tapahtumiin.

Ihmisaivot koostuvat 80-prosenttisesti aivokudoksesta, jonka erikoistuneita soluja ovat neuronit ja gliasolut. Aikuiset ihmisaivot painavat keskimäärin 1,3–1,5 kilogrammaa. Ihmisen aivot ovat muihin eläinlajeihin verrattuna suhteellisesti hyvin suuret ja monimutkaiset, ja niissä on ehkä enemmän neuroneita kuin minkään muun lajin aivoissa.

Ihmisaivot voidaan jakaa erilaisiin yksiköihin. Isoaivot muodostavat yli kolme neljäsosaa kokonaistilavuudesta. Niiden uloin osa on aivokuori, joka vastaa pääasiassa korkeamman tason henkisistä prosesseista. Väliaivot, keskiaivot ja pikkuaivot ovat isoaivojen sisällä ja alapuolella, ja ne liittyvät evoluution kannalta varhemman tason henkisiin toimintoihin.

Ihmisen aivot kehittyvät 30-vuotiaaksi asti, ja osittain senkin jälkeen. Ikääntyessä aivot saattavat rappeutua kun neuroneita kuolee.

Aivoja tutkii neurotiede. Nykyaikaiset kuvantamismenetelmät tuovat paljon tietoa aivojen toiminnasta.

Rakenne

Koostumus

Aivoista 80 prosenttia on aivokudosta, joka koostuu harmaasta ja valkoisesta aineesta, jotka sisältävät neuroneja ja glia- eli hermotukisoluja. Aivoista 10 prosenttia on verta ja 10 prosenttia aivo-selkäydinnestettä.[1]

Koostumukseltaan aivot ovat 77–78 prosenttia vettä, 10–12 prosenttia lipidejä eli rasvamolekyylejä, 8 prosenttia proteiinia, 2 prosenttia liukoisia orgaanisia aineita, 1 prosenttia hiilihydraatteja ja 1 prosenttia epäorgaanisia suoloja.[1]

Koko

Aikuisten ihmisaivojen paino on keskimäärin 1,3–1,5 kilogrammaa, tilavuus 1 350 kuutiosenttimetriä ja pinta-ala 2 500 neliösenttimetriä.[2] Keskimääräiset aivot ovat 167 millimetriä pitkät, 140 millimetriä leveät ja 93 millimetriä korkeat.[1] Aikuisen aivot ovat noin kaksi prosenttia ja vauvan aivot noin 12 prosenttia koko ruumiin painosta . Miehen aivot ovat keskimäärin hiukan painavammat kuin naisen aivot.[1]

Ihmisen aivot ovat eläinkunnassa suhteellisesti hyvin suuret: neljä tai viisi kertaa niin suuret kuin ihmisenkokoisella nisäkkäällä voisi olettaa olevan.[3]

Neuronien lukumäärä saavuttaa vakiotasonsa lapsuusiässä, mutta aivojen massa suurenee senkin jälkeen, kun neuronit kasvavat suuremmiksi ja muodostavat uusia kytköksiä. Aivomassa saavuttaa maksiminsa nuoruusiän aikana. 20 vuoden iässä aivot alkavat kutistua noin yhden gramman vuodessa kun neuroneja kuolee.[1]

Ihmisen elintavat voivat vaikuttaa aivojen kokoon. Esimerkiksi alkoholia käyttävillä ihmisillä on havaittu aivojen kutistumista eli atrofiaa ja aerobisen liikunnan aloittaneilla ihmisillä aivojen kasvua.[1]

Osat

Tiedosto:Brain parts.jpg
Ihmisen aivot kuvattuna sivusuunnasta (otsa oikeaan päin). Vasemmalla poikkileikkaus. (Cranium = kallo, Cortex = aivokuori, Cerebellum = pikkuaivot, Dura = kovakalvo, Spinal Cord = selkäydin, Brain Stem = aivorunko, Basal Ganglia = tyvitumakkeet) Oikealla isoaivojen neljä lohkoa: otsa- eli frontaalilohko (vaaleanruskealla), päälaen- eli parietaalilohko (punaisella), ohimo- eli temporaalilohko (vihreällä) sekä takaraivo- eli oksipitaalilohko (sinisellä). Isoaivojen alapuolella takana ovat pikkuaivot (cerebellum).
Aivokurkiainen, joka yhdistää vasemman ja oikean aivopuoliskon hermosäikein. Heti sen alapuolella sijaitsevat aivo-selkäydinnesteen täyttämät sivukammiot.

Ihmisen aivoista voidaan erotella erilaisia yksiköitä:

  • Isoaivot muodostavat yli kolme neljäsosaa aivojen kokonaistilavuudesta.[4] Ne myös peittävät aivojen muut osat alleen.[5] Isoaivot ovat jakautuneet kahteen aivopuoliskoon, joiden välinen tärkein linkki on aivokurkiainen. Puoliskot ovat rakenteellisesti suunnilleen samanlaiset mutta toiminnallisesti osittain erilaiset. Vasemmassa puoliskossa käsitellään ensisijaisesti puhe, kieli, vaiheittainen päättely ja analyysi sekä tietyt kommunikaatiotoiminnot. Oikea puolisko keskittyy enemmän aistiärsykkeisiin, ääni- ja näköhavaintoihin, luoviin taitoihin ja tilallis-ajalliseen tietoisuuteen.[6]
  • Limbinen järjestelmä sisältää aivokuoren alueet ja sen viereiset alueet eli limbiset lohkot, sekä mantelitumakkeen, hypotalamuksen, talamuksen, nisälisäkkeitä sekä muita syvempiä ja sentraalisempia aivorakenteita. Limbinen järjestelmä liittyy vaistomaiseen käyttäytymiseen, syvälle juurtuneisiin tunteisiin sekä perusimpulsseihin kuten seksiin, raivoon, mielihyvään ja yleiseen hengissä pysymiseen. Se muodostaa myös linkin isoaivokuoren ja aivorungon välille.[9]
  • Aivorunkoon kuuluvat väliaivot, keskiaivot, aivosilta ja ydinjatke.[10] Aivorunko liittyy keski- ja matalan tason henkisiin toimintoihin, ei niinkään abstraktin ajattelun tapaisiin korkeampiin toimintoihin. Se on myös alitajuisten eli autonomisten säätelymekanismien keskus. Ydinjatkeen tumakkeet ovat esimerkiksi hengityksen, sydämen toiminnan ja verenpaineen valvonnan ja säätelyn keskuksia. Aivorungon tumakkeet ovat hermosolukeskusten ryhmiä. Aivorungossa on myös hermosyiden eli aksonien ryppäitä.[11]
    • Väliaivot ovat isoaivojen sisällä. Ne ovat yksi aivorungon osa. Talamuksen avulla ne kytkevät aistinelimistä aksoneita pitkin tulleita impulsseja oikeille aivokuoren aistinalueille, hajurataa lukuun ottamatta. Väliaivojen pohjaan kuuluu myös hypotalamus, joka ohjaa muun muassa aivolisäkkeen toimintaa, unta, nälkää, janoa, lämmönsäätelyä ja hormonaalista säätelyä. Väliaivojen yläosaan puolestaan liittyy käpylisäke eli käpyrauhanen.[12]
    • Keskiaivot ovat väliaivojen alapuolinen osa. Ne ovat yksi aivojen vanhimmista osista, ja ihmisen keskiaivot ovatkin hyvin samankaltaiset kuin matelijoillakin. Keskiaivot tuottavat dopamiini-välittäjäainetta sekä osallistuvat tahdonalaisten liikkeiden ja refleksien ohjaamiseen. Niistä lähtevät myös silmien liikkeitä ohjaavat aivohermot.[13]
    • Aivosilta on aivorungon keskiosa, joka toimii yhdyssiteenä pikkuaivojen puoliskojen välillä sekä pikkuaivojen ja isoaivojen välillä. Aivosiltaan kuuluu osa hengityskeskuksesta, joka säätelee hengitysrytmiä. Aivosilta vaikuttaa myös ihmisen tarkkaavaisuuteen.[13]
    • Ydinjatke ohjaa useita peruselintoimintoja, joita ei voi hallita tietoisesti, kuten sydämenlyöntejä, verenpainetta, hengitystä sekä nielemis- ja aivastusrefleksejä.[13]
  • Pikkuaivot ovat aivojen alempi ja taaimmaisin osa. Pikkuaivojen tärkeimmät tehtävät ovat koordinoida vartalon liikkeitä, kuten tasapainoa ja asentoa, hallitsemalla lihasten jännitystilaa.[11]
  • Aivokammiot ovat aivojen sisällä olevia onteloita. Ne tuottavat aivo-selkäydinnestettä, jossa aivokudos kelluu kallon sisällä. Neste uudistuu neljä tai viisi kertaa päivässä. Neste toimii iskunvaimentimena, ja lisäksi sen proteiinit ja glukoosit ravitsevat aivoja ja valkosolut suojaavat infektioita vastaan. Neste kulkee aivokammioiden läpi aivovaltimoiden sykkeen kuljettamana.[1]

Neuronit ja sähkökemialliset pulssit

Neuronit eli hermosolut ovat aivojen ja hermoston yksittäisiä, mikroskooppisia yksiköitä. Arviot niiden määrästä vaihtelevat 50 miljardista 500 miljardiin.[14] Yleisesti esitetty luku on 100 miljardia, ja vuonna 2009 julkaistussa tutkimuksessa päädyttiin lukemaan 86 miljardia.[15]

Jokainen neuroni on itsenäinen toiminnallinen yksikkö. Siinä on haarakkeet, jotka vastaanottavat ja lähettävät hermosignaaleja. Neuronit muodostavat ajan ja käytön myötä kytköksiä toisiinsa. Synapsit ovat kommunikaatiokeskuksia, joissa neuronit siirtävät hermoimpulsseja toisilleen.[14]

Hippokampuksen eli aivoturson neuronit ovat hyvin energiatehokkaita. Tämän syytä ei varmasti tiedetä, mutta se voi johtua osittain siitä, että synapsit ovat hyvin mukautuvia ja niitä on useita eri kokoisia.[16]

Ihmisen neuronit ovat fysiologisesti samanlaisia kuin muidenkin nisäkkäiden neuronit, joskin neuronien koko riippuu eläinlajin koosta.[3] Koska ihmisaivot ovat hyvin suuret, niissä on enemmän neuroneita kuin muiden kädellisten aivoissa.[15] Ihmisaivoissa on mahdollisesti myös enemmän neuroneita kuin ihmistä suurempiaivoisten norsujen ja valaiden aivoissa, sillä kädellisten aivojen neuronitiheys on niitä korkeampi.[15]

Aivojen soluista noin puolet[15], mutta joidenkin arvioiden mukaan jopa 90 prosenttia, on gliasoluja eli hermotukisoluja. Niillä on erilaisia tehtäviä: ne esimerkiksi tarjoavat neuroneille ravintoa tai tuhoavat mikrobeja.[14]

Yhteys hermoihin

Aivot ohjaavat ja koordinoivat elimistöä selkäytimen ja siitä lähtevien ja haarautuvien hermojen kautta. Kaksitoista aivohermoparia kytkeytyy suoraan aivoihin, kulkematta selkäytimen kautta. Ne liittyvät pään toimintoihin; niitä ovat esimerkiksi hajuhermo, kasvohermo ja näköhermo.[17] Aivoista itsestään puuttuvat tuntoreseptorit, joten aivot eivät tunne mitään. Päänsäryn syy ei yleensä ole aivoissa.[18]

Verenkierto

Aivojen valtimokehä.

Aivoille veren ja sen mukana glukoosin ja hapen toimittaa valtimojärjestelmä, joka koostuu useasta valtimosta. Veri saapuu aivoihin vasemman ja oikean yhteisen kaulavaltimon (Arteria carotis communis) haaroja eli sisempiä kaulavaltimoita (Arteria carotis interna) sekä niskassa kulkevia parillisia nikamavaltimoita (Arteria vertebralis) pitkin. Nikamavaltimot yhdistyvät parittomaksi kallonpohjan valtimoksi (Arteria basilaris). Nämä kolme valtimoa muodostavat aivojen pohjassa aivojen valtimokehän (Circulus Willisi), josta nousee molemmin puolin kolme aivojen päävaltimoa (Arteriae cerebri anterior, media et posterior) niin, että takaraivolohkot sekä suurimmassa osin ohimolohkotkin saavat verensä viimeksi mainitun kautta. Veri palaa sydämeen lähellä kalloa sijaitsevien laskimojen sekä yläonttolaskimon kautta.[19][20]

Aivojen valtimokehän monihaarainen rakenne auttaa aivojen verensaannissa, vaikka jokin valtimoista tukkeutuisikin hitaasti, sillä veri pystyy jossain määrin kulkeutumaan aivoille muita verisuonia pitkin.[1][19]

Suojaus

Aivoja suojaa luinen pääkallo niiden ympärillä. Kallo toimii kotelona, joka suojaa aivoja iskuilta. Pääkallon sisäpuolella on kolme suojaavaa aivokalvokerrosta: kovakalvo, lukinkalvo ja pehmytkalvo. Aivo-selkäydinneste toimii aivojen iskunvaimentimena ja myös ruokkii aivokudosta.[1]

Kapasiteetti

Vuonna 2015 julkaistun tutkimuksen mukaan ihmisaivojen kapasiteetti on verrattavissa vähintään tietokoneen 1200 petatavun eli noin 1.2 miljoonan teratavun tallennustilaan. Tämä olisi kymmenen kertaa aiempaa arvioitua suurempi.[16]

Usein toistetun myytin mukaan ihminen käyttäisi vain kymmentä prosenttia aivokapasiteetistaan. Aivokuvaukset ja aivojen vahingoittumisen seuraukset ovat kuitenkin osoittaneet, että aivojen kaikki osat ovat käytössä, vaikkakaan eivät aina samanaikaisesti.[21]

Energiankulutus

Aivojen neuronit vaativat paljon energiaa. Aivot ovat riippuvaisia jatkuvasta verenkierrosta, sillä aivot käyttävät energianlähteenään glukoosia, jota ne eivät kykene varastoimaan itse. Vaikka ihmisen aivot ovat vain kaksi prosenttia ruumiinpainosta, ne käyttävät 15 prosenttia sydämen pumppaustuotosta, 20 prosenttia hapen kokonaiskulutuksesta ja 25 prosenttia elimistön glukoosista. Levossa aivot kuluttavat energiaa suunnilleen saman verran kuin aktiivisen toiminnan aikana.[22] Aivot kuluttavat noin 120 grammaa glukoosia päivässä, eli 420 kilokaloria.[1] Jos glukoosia ei ole saatavilla riittävästi esimerkiksi paaston tai ketogeenisen ruokavalion seurauksena, aivot siirtyvät käyttämään energianlähteenään ketoaineita.[23]

Evoluutio

Ihmisen aivot ovat kehittyneet ihmisen evoluution aikana paljon suuremmiksi ja rakenteeltaan mutkikkaammiksi kuin ihmisen lähimpien apinasukulaisten aivot.[24] Ihmisen aivot eivät ole eläinmaailman suurimmat absoluuttisesti eivätkä suhteellisesti, mutta ne toimivat paremmin kuin muiden lajien aivot. Ihmisaivoista tekee tehokkaat niiden paksu kuorikerros, niiden voimakas poimuttuminen sekä aivojen rakenne, joka optimoi aivotoiminnot.[25]

Aivojen kasvu ja kehitys

Ihmisen kantamuodon afarinetelänapinan (Australopithecus afarensis), joka eli 3–4 miljoonaa vuotta sitten, aivot olivat tilavuudeltaan vain 400 kuutiosenttimetriä. Ensimmäisen Homo-suvun lajin, käteväihmisen (Homo habilis), aivot olivat 660 cm³.[24] Pystyihmisen (Homo erectus) aivot olivat tilavuudeltaan jo 1000 cm³.[24] Seuraavan kasvuspurtin ihmisaivot ottivat heidelberginihmisessä.[26] Nykyihmisen lähisukulaisen ja sitä hiukan vanhemman neandertalinihmisen aivot olivat jopa hiukan nykyihmisen aivoja suuremmat.[24]

FZD8-geeni muuttui ihmisellä noin seitsemän miljoonaa vuotta sitten, kun ihmisen ja simpanssien kehityslinjat erkaantuivat. Ihmisen muunnos geenissä saa aivosolujen määrän lisääntymään.[27] Ihmisaivojen kasvun aiheuttaneet mutaatiot niin erectuksessa kuin heidelberginihmisessäkin ovat saattaneet esiintyä SRGAP2-geenissä.[28]

Laji Aivojen tilavuus (cm³)[29]
Homo habilis 550–687
Homo ergaster 700–900
Homo erectus 600–1250
Homo heidelbergensis 1100–1400
Homo neanderthalensis 1200–1750
Homo sapiens 1400

Ihmisen aivot ovat kehittyneet paitsi suuremmiksi, myös mutkikkaammiksi. Kasvavien ihmisaivojen eri osat alkoivat ihmisen evoluution aikana erikoistua eri tehtäviin, jolloin aivot pystyivät alkamaan ratkaista ongelmia paikallisesti. Näin kaikkien neuronien ei enää tarvinnut olla yhteydessä toisiinsa, vaan riitti, että ne yhdistivät aivojen alueet toisiinsa. Samalla ihmisen aivopuoliskojen tehtävät erikoistuivat.[24]

Kasvun syyt

Ihmisaivojen kehitys on suurelta osin laajojen sosiaalisten verkostojen ansiota. Suuria aivoja tarvitaan pitämään yllä sosiaalisia taitoja, jotka ihmisellä muodostuivat tärkeiksi. Ihmislajin aivot alkoivat kasvaa siinä vaiheessa, kun ihmiselle kehittyvät yksilöiden välisen kanssakäymisen ja vuorovaikutuksen vaatimat taidot.[24] Ihmisaivojen kehityksessä tärkeää on ollut myös ihmisen ravitsemuksen laajentuminen: ruokavalioon tulivat lihan proteiinit ja rasvat sekä merieläimistön monityydyttymättömät rasvat, ja ihminen oppi ruoan kypsennyksen.[26] Kypsennettäessä vaikeasti sulavat proteiinit ja kuidut pilkkoutuivat, jolloin ihmiset saivat ravinnostaan enemmän energiaa kuin raa’asta ruoasta. Valtaosa lisäenergiasta voitiin käyttää energiasyöppöihin aivoihin, jotka saattoivat näin kasvaa paljon aiempaa suuremmiksi.[30]

Pari miljoonaa vuotta sitten ihmisen perimässä tapahtui mutaatio, jonka seurauksena aivot saivat tilaa kasvaa kun leukaperät ja purulihakset surkastuivat. On myös arveltu, että ihmisen aivojen kasvu vauhdittui kun Afrikka kuivui savanniksi ja ihmisten tekemät innovaatiot muuttivat arkea.[26]

Nykyihminen

Noin 70 000 vuotta sitten ihmisessä tapahtui merkittävä mutaatio, joka aloitti "kognitiivisen vallankumouksen". Mutaatio antoi ihmiselle kyvyn ajatella uusilla tavoilla ja kehittää kokonaan uudenlaisen kielen. Sen ansiosta ihminen pystyi tekemään yhteistyötä isoissa ryhmissä, syrjäyttämään muut ihmislajit ja synnyttämään kulttuurin.[31]

Homo sapiensin aivot kasvoivat aina 1 600 kuutiosenttimetrin kokoisiksi, mutta ovat viimeisten 10 000 vuoden aikana kutistuneet 1 350 kuutiosenttimetriin.[32] Muutoksen syytä ei vielä tiedetä. Syyksi on ehdotettu esimerkiksi ihmisen lihasten pienenemistä ilmaston lämmetessä, viljapitoiseen ruokavalioon siirtymisestä aiheutunutta ravitsemuksen heikkenemistä, tai ihmisyksilöiden tyhmenemistä kehittyneiden yhteiskuntien mahdollistaessa tyhmienkin selviytymisen. On myös esitetty, että ihmisaivojen koon pieneneminen kertoo vain siitä, että aivot muuttuvat tehokkaammiksi.[33]

Elinkaari

Sikiöllä

Kuusiviikkoisen sikiön hermosto. Isoaivojen sikiöaikainen kehitysvaihe on telencephalon ja väliaivot diencephalon. Aivohermot ovat jo kuvassa kehittyneinä numeroin 1–14, joskin ne muuttuvat hieman sikiönkasvun aikana. Numerolla 15 on merkitty ääreishermostoa.

Ihmisen sikiön aivojen ja hermoston kehitys alkaa noin kolmen viikon iässä. Silloin ektodermin solut eriytyvät ja muodostavat sikiön selkäosaan hermostolevyn, josta tulee aivot ja selkäydin. Neljän viikon ikäisenä aivot alkavat kehittyä pikkuruisena pullistumana hermostoputken yläpäässä. Seitsemän viikon jälkeen ovat nähtävissä aivojen pääalueet kuten isoaivokuori. 11 viikon kohdalla ruutuaivot (rhombencephalon) jakautuvat pikkuaivoiksi ja aivorungoksi. Aivojen kehitys jatkuu raskausajan aikana, ja aivojen uurteet ja poimut muuttuvat monimutkaisemmiksi.[34] Seitsemän kuukauden kohdalla aivot ovat kasvaneet niin paljon, että niissä on jo liikaa neuroneita. Sen seurauksena heikoimmat neuronit tuhoutuvat apoptoosiksi kutsutussa prosessissa.[35]

Lapsuusiällä

Syntymähetkellä vauvalla on jo noin 100 miljardia neuronia kuten aikuisellakin, mutta ne eivät ole vielä kehittyneitä.[34] Neuronit alkavat kasvattaa dendriittejä. 24 kuukauden iässä synapsien määrä saavuttaa huippunsa, ja aivoissa alkaa synapsien karsinta, jonka seurauksena puolet synapseista katoaa aikuisikään mennessä. Paljon käytetyt yhteydet vahvistuvat, mutta laiminlyödyt kytkennät alkavat kuihtua pois.[36]

Vastasyntyneen aivot painavat 300 grammaa. Ensimmäisen vuoden aikana aivojen paino kaksinkertaistuu. Aivot jatkavat nopeaa kasvuaan, kun dendriitit pitenevät ja uusia gliasoluja sekä myeliiniä muodostuu. Viisivuotiaan aivot ovat jo 95 prosenttia aikuisen aivojen painosta.[37]

Lapsen aivojen perusrakenne on valmis noin kolmivuotiaana. Jotkin aivojen osat, kuten prefrontaalisen aivokuoren alueet, pysyvät edelleen “sammuksissa”. Lapsi voi alkaa taltioida muistoja kolmen vuoden iässä kun hippokampus ja mantelitumake ovat kehittyneet. Seitsemänteen ikävuoteen mennessä aivorungossa olevan aivoverkoston aksonit saavat myeliinitupen, mikä tekee mahdolliseksi tarkkaavaisuuden keston pidentämisen. Harmaan aineen määrä on huipussaan lapsuuden aikana, minkä jälkeen sen tilavuus vähenee kun tarpeettomat hermoradat karsiutuvat pois.[34]

Nuoruusiällä

Kielelliset kyvyt ja tilallisten suhteiden hahmottaminen kehittyvät 6 ja 13 ikävuoden välillä kun parietaalinen aivokuori kehittyy.[34] Aivoihin kasvaa toinen aalto synapseja 7–11 vuoden iässä.[38] Teini-iässä tilallisiin, sensorisiin, kuulo- ja kielialueisiin liittyvät päälaki- ja ohimolohkot kypsyvät. Prefrontaalinen aivokuori on kuitenkin vielä kehittymätön, minkä seurauksena nuorilta puuttuu usein arvostelukyky ja impulssinhallinta.[34]

Aikuisiällä

Prefrontaalisen aivokuoren kehityttyä aivojen osista viimeisenä 30 vuoden ikään mennessä myös ihmisen korkeammat kognitiiviset kyvyt kuten kyky harkita tekoja ja seurauksia kehittyvät valmiiksi.[34]

Ikääntyessä

Aivot voivat rappeutua ikääntymisen myötä. Ihmisen aivojen koko pienenee 20 ja 90 ikävuoden välillä 5–10 prosenttia. Aivoista kuolee neuroneita, ja jäljelle jääneet neuronit kuljettavat impulsseja aiempaa hitaammin aksioneita peittävän myeliinin rappeutuessa. Tämä voi johtaa ajatusprosessien hidastumiseen, muistiongelmiin ja heikkeneviin reflekseihin. Lisäksi aivojen uurteet leviävät ja muodostuu plakkia. Myös dopamiiniverkkojen toiminta vähenee, mikä voi heijastua muutoksina käyttäytymisessä.[39]

Toisaalta aivot voivat myös kyetä eri tavoin kompensoimaan ikääntymisen vaikutuksia. Esimerkiksi keski-ikäisillä myeliinin määrä lisääntyy ohimo- ja otsalohkoissa.[39]

Ihminen voi hidastaa aivojensa ikääntymistä esimerkiksi aerobisella liikunnalla, säännöllisellä unella, hyvällä ruokavaliolla, henkisillä harrastuksilla tai pitämällä verensä glukoositason matalalla.[39] Psychological Science -lehden tutkimuksen mukaan hoksottimet vahvistuvat vasta kun aletaan opetella uusia asioita, joka vaativat paneutumista. On myös hyvä jos uuden taidon lisääminen tuo elämään uusia sosiaalisia virikkeitä. Yhteisretkien kaltaiset puuhastelut eivät kuitenkaan yksin riittäneet kohentamaan ikäihmisten muistitaitoja.[40]

Vaikuttavat geenit

Vuoteen 2016 mennessä ihmisestä on löydetty 1223 geeniä, jotka vaikuttavat erityisesti aivoihin. Näistä erityisen tärkeänä pidetään esimerkiksi geeniä ARHGAP11B, joka vaikuttaa ihmisaivojen voimakkaaseen poimuttumiseen sekä hermosolujen jakaantumiseen ja paksumpien kerrosten syntyyn.[41]

Ihmisaivojen on todettu olevan selvästi mukautuvampia ja vähemmän geeneistä riippuvaisia kuin esimerkiksi simpanssien aivot.[42]

Niitä geenejä, aivojen alueita tai neurologisia prosesseja ei vielä ole löydetty, jotka olisivat ominaisia eri älykkyyden lajeille.[43]

Yksilöllinen vaihtelu

Jokaisen ihmisen aivot ovat erilaiset. Aivojen rakenne määräytyy geeneistä, joiden ekspressio vaikuttaa hermoston välittäjäaineiden määrien kautta esimerkiksi persoonallisuuteen, muistiin ja älykkyyteen. Geenien vaikutus ajatteluun on havaittu voimakkaaksi esimerkiksi toisistaan erotettujen identtisten kaksosten vertailussa. Geeniekspressioihin vaikuttaa myös ympäristö, kuten ruokavalio, maantieteellinen ympäristö, sosiaaliset verkostot ja stressitasot. Kokemus ja oppiminen muokkaavat aivopiirejä ihmisen elinaikana, ja aivot pystyvät korjaamaan itseään sekä jatkamaan kasvua ja kehitystä koko elämän ajan.[44]

Ihmisyksilön yleisälykkyyden (g) määräävät pääasiassa geenit, jotka antavat aivoille tietyn rakenteen. Ihmisaivojen ja yleisälykkyyden suhdetta ei vielä tunneta tarkasti. Joidenkin tutkijoiden mukaan korkea g juontuu hermoimpulssien väylien paksuudesta, toisten mukaan paksusta aivokuoresta tai nopeista hermoimpulsseista, ja joidenkin mukaan se perustuu tiettyyn aivojen komentokeskuksen toimintaan. Älykkäillä lapsilla on tutkimuksissa havaittu olevan tavallista paksummat hermoyhteydet.[45] Aivojen koon ja älykkyysosamäärän välillä on pieni positiivinen korrelaatio, noin 0,3–0,4:n suuruusluokkaa.[46]

Miesten ja naisten aivot eroavat hiukan toisistaan, mutta näiden erojen merkitystä ei vielä kunnolla ymmärretä. Naisten aivokurkiainen ja etukommissuura ovat suuremmat kuin miehillä, mikä aiheuttaa sen, että naisten tunteellisempi oikea aivopuolisko on paremmin kytköksissä analyyttisempään vasempaan aivopuoliskoon. Naiset käyttävät monimutkaisia tehtäviä suorittaessaan molempia aivopuoliskoja, kun taas miehet suorittavat tehtävät sillä puoliskolla, joka tehtävään soveltuu paremmin.[47]

Homoseksuaalien aivot muistuttavat vastakkaisen sukupuolen heterojen vastaavia.[47] Homomiesten ja heteronaisten kumpikin aivopuolisko on samankokoinen ja heillä on vasemmassa mantelitumakkeessa enemmän hermoyhteyksiä kuin oikeassa. Lesbojen ja heteromiesten oikea aivopuolisko on vasempaa suurempi, ja hermoyhteyksiä on enemmän oikeassa mantelitumakkeessa.[48]

Ihmisen kätisyys saattaa kytkeytyä siihen, kummassa aivopuoliskossa ihmisellä on kielidominanssi.[47]

Erilaiset persoonallisuustyypit voidaan kytkeä tiettyihin aivojen toimintakuvioihin, kuten tiettyjen välittäjäaineiden tuotantoon tai tiettyjen aivon osien aktiivisuuteen tai kytkösten määrään.[49] Poikkeamat aivoissa voivat aiheuttaa poikkeavaa käyttäytymistä tai poikkeuksellista lahjakkuutta.[50]

Tehtävät ja toiminnot

Ihmisen aivojen ensisijainen tehtävä on auttaa koko elimistöä pysymään optimaalisessa tilassa suhteessa ympäristöön. Aivot saavat jatkuvaa informaatiovirtaa sähköisinä impulsseina aistielinten hermosoluilta. Suurin osa siitä on epäolennaista eikä tärkeää, joten se jää tiedostamattomaksi. Jos aivot kuitenkin pitävät informaatiota uutena tai tärkeänä, aivot vahvistavat signaaleja ja saavat ne esiintymään useilla alueilla. Kun tätä toimintaa ylläpidetään riittävän kauan, syntyy tietoinen kokemus. Joskus aivot määräävät elimistön toimimaan lähettämällä lihaksiin signaaleja, jotka saavat ne supistumaan.[51]

Aistiminen

Ihmisaivojen isoaivokuoren erityisalueet tuottavat aistimukset sähköisistä signaaleista, joita ne saavat aistielimiltä. Sensoriset neuronit, jotka ovat usein erikoistuneet tietystä paikasta tuleviin signaaleihin, reagoivat saamaansa informaatioon. Kukin aivokuoren erityisalue käsittelee tietyn informaation: näitä alueita ovat esimerkiksi tuntoalue, kuuloalue, näköalue, hajualue sekä primääri ja sekundäärinen makualue. Tietoisuuteen nousee vain murto-osa kaikista aistimuksista, vaikka jotkin tiedostamattomatkin aistimukset saattavat ohjata ihmisen käyttäytymistä. Aistimukset voi laukaista paitsi ulkoinen tapahtuma, myös sisäinen muistikuva tai mielikuvitus.[52]

Säätely

Aivot säätelevät monia kehon perustoimintoja, kuten sydämen sykettä, hengitystä, ruoansulatusta, hikoilua ja sukupuoliviettiä. Säätelystä vastaavat hypotalamus ja aivorunko yhdessä.[53] Aivojen hermokeskukset vaikuttavat elimistön rauhasiin, jotka tuottavat ja vapauttavat erilaisia hormoneja. Aivoissa hormoneja valmistavat aivolisäke ja käpylisäke. Hormonit vaikuttavat esimerkiksi nälän, janon tai kylläisyyden aistimuksiin sekä uni-valve-rytmiin.[54]

Liikkeet

Aivojen primääri motorinen aivokuori osallistuu sekä tietoisiin että tiedostamattomiin liikkeisiin. Se lähettää signaaleja, jotka supistavat lihaksia. Tietoisiin liikkeisiin liittyy myös “korkeampia“ otsalohkoalueita, kuten esimotorinen ja supplementaarinen motorinen aivokuori. Refleksiliikkeisiin aivot eivät osallistu. Pikkuaivot kontrolloivat liikkeiden osatekijöiden järjestystä ja kestoa.[55]

Kieli

Ihmisen kolme tärkeintä kielialuetta löytyvät useimmilta ihmisiltä vasemmasta aivopuoliskosta, ja neljä muuta tärkeää kielialuetta oikeasta aivopuoliskosta. Vasemman puoliskon tehtäviä ovat puheen tuottaminen, puheen ymmärtäminen ja sanojen tunnistus. Oikean puoliskon tehtäviä ovat sävyn tunnistaminen, rytmi, painotus ja intonaatio, puhujan tunnistaminen ja eleiden tunnistaminen.[56]

Kielen prosessointi tapahtuu pääasiassa Brocan ja Wernicken alueilla. Kun ihminen kuulee sanoja, Wernicken alue sovittaa äänet niiden merkitykseen sitä ympäröivän Geschwindin alueella olevien neuronien avulla. Kun ihminen puhuu, Wernicken alue etsii oikeat sanat, jotka välitetään Brocan alueelle, joka muuttaa sanat ääniksi liikuttamalla kieltä, suuta ja leukaa sekä aktivoimalla kurkunpään.[57]

Erityyppiset kielelliset tehtävät aktivoivat joukon eri alueita aivoissa. Monien aivokuoren alueiden tarkat tehtävät kielen kannalta ovat yhä epäselviä.[57]

Muisti

Muistissa on kyse siitä, että ihminen luo menneisyyden kokemukset uudelleen aktivoimalla synkronisesti neuroneita, jotka liittyivät alkuperäiseen kokemukseen. Muistiin liittyy moni aivojen alue. Muistoja säilytetään fragmentteina kaikkialla aivojen eri puolilla.[58]

Peilisolut

Peilisolut ovat neuroneja, jotka aktivoituvat kun ihminen liikkuu tai näkee jonkun muun liikkuvan. Niiden avulla ihminen saa välitöntä tietoa siitä, mitä toisen ihmisen mielessä liikkuu, mitä pidetään matkimisen perustana.[59] Peilisoluja on löytynyt ihmisaivojen Brocan alueelta, otsalohkon liikealueilta, ohimolohkosta ja päälaenlohkosta.[60]

Tunteet

Tunteet luodaan limbisessä järjestelmässä. Sen ja aivokuoren välisen kaksisuuntaisen liikenteen ansiosta tunteet voidaan kokea tietoisesti ja tietoiset ajatukset voivat vaikuttaa tunteisiin.[61]

Tietoisuus ja mieli

Suurimmalla osalla tietoisuuden tapahtumista näyttäisi olevan vahva kytkös aivojen sähkökemiallisiin, fyysisiin tapahtumiin. Tietoisuuden ja aineen (aivojen) välinen suhde on länsimaisen filosofian historian eräs suuri kysymys, jota on pohtinut lukematon määrä ihmisiä, mutta silti edistyminen on ollut hidasta tieteellisen tutkimuksen saralla.[62]

Ihmisen tietoisuutta hallitsee kolme perusverkostoa. Lepotilaverkosto toimii kun ihminen antaa ajatustensa vaellella vapaasti. Se käsittää useita aivoalueita ja sen toimiessa aivot käyttävät noin 80 prosenttia aivojen käyttämästä kokonaisenergiasta. Tarkkaavaisuusverkosto aktivoituu kun tapahtuu jotain, joka saa ihmisen suuntaamaan huomionsa johonkin. Se käsittää lähinnä aivosaaren etuosan ja pihtipoimun etuosan. Toimintaverkosto aktivoituu päälakilohkon alaosassa ja otsalohkon etuosan yläpuolella, kun tapahtuma vaatii toimintaa. Toimintaverkosto kiihdyttää aktiivisuutta niillä aivoalueilla, joita tarvitaan toiminnan suorittamiseen.[63]

Mielenfilosofian keskeinen ongelma liittyy mielen ja ruumiin väliseen suhteeseen, eli kysymykseen siitä, kuinka aivot, joka on aineellinen olio, voivat olla tietoiset, mikä on mielen ilmiö.[64]

Nukkuminen ja unet

Normaali unirytmi.

Ihmisaivojen vuorokausirytmi riippuu kahden molekyylin pitoisuuksien vaihtelusta. Aamulla ihmisen aivoissa alkaa syntyä vireysmolekyyli oreksiinia, joka aktivoi hermosoluja ja pitää aivot hereillä. Päivän aikana aivoissa muodostuu adenosiinia, joka väsyttää aivoja. Iltapäivällä vireysmolekyyli oreksiinin tuotanto alkaa hiipua. Myöhään illalla adenosiinipitoisuus aivoissa on niin suuri, että ihminen nukahtaa. Yön aikana adenosiini sitoutuu jälleen polttoaineena toimivaan ATP-molekyyliin.[65]

Aivojen valveillaolokeskukset sammuvat nukkumisen ajaksi GABA-välittäjäaineen vaikutuksesta. Ihmisen nukkuessa aivot pysyvät aktiivisina ja suorittavat erilaisia tärkeitä tehtäviä. On arveltu, että nukkumisen aikana aivot lajittelevat, prosessoivat ja taltioivat informaatiota.[66] Unenpuute heikentää ihmisen kykyä ajatella ja muistaa asioita selkeästi.[66] Unen aikana aivoissa toimii myös niin sanottu glymfaattinen järjestelmä, joka puhdistaa aivoista sinne kertyneet myrkylliset kuona-aineet. Tässä prosessissa aivoista puhdistuvat vaaralliset proteiinit, kuten beeta-amyloidi, joka takertuessaan hermosoluihin alkaa muodostaa Alzheimerin taudin esiasteita. Puhdistusjärjestelmä käyttää hyväksi gliasoluja ja aivoissa kulkevia kanavia.[67]

Unessa on neljä vaihetta, joiden aikana aivoissa esiintyy eritaajuuksisia aaltoja. Valveilla esiintyy alfa-aaltoja, joiden taajuus on 8–12 hertsiä. Kevyessä unessa esiintyy theeta-aaltoja (4–7 Hz), seuraavassa vaiheessa beeta-aaltoja (12–16 Hz), syvässä unessa delta-aaltoja (1–3 Hz) ja REM-unessa samanlaisia aaltoja kuin valvetilan ja kevyen unen aikana.[68]

Syvän unen aikana aivot eivät ole kovin aktiiviset, mutta REM-unessa aivot aktivoituvat ja tuottavat ihmiselle eloisia ja voimakkaita unia. Etenkin aistimuksia prosessoiva aivojen osa on REM-unen aikana aktiivinen, mutta kriittisesti kokemuksia analysoiva otsalohko on käytännössä suljettuna.[66]

Aivojen häiriöt

Usean mielenterveyden häiriön syynä on jokin aivojen neurologinen häiriö. Kun kuvaamisteknologioiden synty on tehnyt hermostoprosesseista näkyviä, on mielen häiriöt voitu tunnistaa enenevässä määrin aivoista johtuviksi.[69]

Aivojen fysikaaliset häiriöt voidaan jakaa kolmeen tyyppiin:[69]

Lisäksi ovat toiminnalliset häiriöt, joiden perimmäistä syytä ei tunneta, mutta niiden yhteydessä voidaan havaita poikkeamia aivojen toiminnassa. Niihin luokitellaan esimerkiksi ADHD ja fobiat.[69]

Moni häiriö, kuten Parkinsonin tauti, masennus ja autismin kirjo, voidaan luokitella useampaan kuin yhteen ylläolevista tyypeistä.[69]

Hoito

Neurokirurgialla voidaan hoitaa esimerkiksi aivokasvaimia, kohonnutta painetta, fyysisiä aivovammoja, verisuonipoikkeamia tai aivopaiseita.[70] Joitain häiriöitä, kuten masennusta ja Alzheimerin tautia voidaan hoitaa lääkkeillä.[71]

Psykiatria keskittyy mielenterveyden häiriöiden hoitoon.[72] Neurologia tutkii ja hoitaa erityisesti aivojen, hermoston ja lihasten sairauksia, jotka katsotaan sen alan piiriin kuuluviksi.[73]

Aivotutkimus

Pääartikkeli: Neurotiede
PET-kuva aivoista, mistä näkyy aivojen aktiivisuustaso (punainen aktiivisempi)

Neurotiede on perustunut 1970- ja 1980-luvuilta lähtien kuvantamismenetelmiin. Toiminnallisen magneettikuvauksen ja aivosähkökäyrän kaltaisten menetelmien avulla voidaan seurata elävän ihmisen aivojen sähköistä toimintaa, kun koehenkilö suorittaa erilaisia tehtäviä tai ajatusprosesseja. Aiemmin tietoa aivokudoksesta saatiin esimerkiksi tutkimalla rottien tai muiden sellaisten eläinten aivoja, joiden aivot muistuttavat ihmisaivoja. Aivojen eri osien tehtävistä on saatu tietoa myös erilaisten aivovaurioiden yhteydessä. Aivovaurio jollakin tietyllä alueella pään sisässä on liittynyt jonkinlaiseen toimintahäiriöön, mistä on ollut mahdollista päätellä mikä aivojen alue vaikuttaa mihinkin.[74]

Aivokuvausmenetelmät jaetaan anatomiseen kuvaukseen ja toiminnalliseen kuvaukseen. Anatominen kuvaus antaa tietoa aivojen rakenteesta, ja toiminnallinen kuvaus näyttää, miten aivot toimivat.[75]

Human Brain -hanke on vuonna 2013 käynnistynyt Genevestä johdettu kansainvälinen tutkimushanke, jonka tavoitteena on luoda ihmisaivojen digitaalinen kopio ennen vuotta 2023. Digitaalisissa aivoissa impulssien pitäisi kulkea täsmälleen samalla tavalla kuin oikeissa aivoissa. Hankkeen ensimmäinen tavoite on tutkia ihmisaivot niin hyvin, että ymmärretään, miten aivojen osat toimivat ja millainen niiden rakenne on. Valmiin mallin toivotaan näyttävän ensimmäistä kertaa, miten ajatukset aivoissa syntyvät ja missä tietoisuus sijaitsee. Digitaalisten ihmisaivojen toimiminen edellyttää nykyisiä huomattavasti tehokkaampaa tietokonetta.[76] Digitaaliset aivot tekevät teoriassa mahdolliseksi luoda ihmiselle ikuinen virtuaalinen elämä.[77]

Aivojen kytkeminen ulkopuolisiin laitteisiin

Aivot kyetään nykyisin kytkemään sähkölaitteisiin, joiden avulla niiden toimintoihin voidaan vaikuttaa. Aivojen lähettämiä sähköisiä hermoimpulsseja voidaan myös ohjata elimistön ulkopuolisiin laitteisiin ja järjestelmiin, jolloin konetta voidaan oppia ohjaamaan ajatuksen voimalla.[78]

Yleinen esimerkki aivojen ohjaamasta keinotekoisesta laitteesta on raajaproteesi. Se liitetään hermostoon sähköjohdoilla, joita pitkin käskyt siirtyvät pieniin sähkömoottoreihin, jotka liikuttavat muun muassa niveliä. Johdot voidaan yhdistää implantista myös suoraan tarvittavia toimintoja ohjaaviin neuroneihin. Myös aivosähkökäyrän antamia tietoja aivojen sähköisistä ilmiöistä voidaan käyttää raajan ohjaamisessa. Tietokonettakin voidaan ohjata ajatuksen voimalla eri tavoin, kuten aivojen pinnalle kiinnitettyjen mikrosirujen avulla. Näin voidaan ohjata esimerkiksi pelihahmoja tai pyörätuolia.[79]

Kuurojen ja sokeiden avuksi on kehitetty sähkötoimisia istutteita, jotka lähettävät valoärsykkeitä näköhermon tai kuuloärsykkeitä kuulohermon kautta aivoihin. Parkinsonin tautia voidaan hoitaa syvälle aivojen sisäosiin yhteydessä olevalla tahdistimella, joka ärsyttää sähköisesti tietyn alueen hermosoluja.[80]

Katso myös

Lähteet

  • Carter, Rita; Aldridge, Susan; Page, Martyn; Parker, Steve: Aivot: Kuvitettu opas aivojen rakenteeseen, toimintaan ja häiriöihin. Readme.fi, 2016 (alkuteos The Brain Book, 2009). ISBN 978-952-321-166-7.
  • Damasio, Antonio: Itse tulee mieleen : tietoisten aivojen rakentaminen. alkuteos: Self comes to mind. Helsinki: Terra Cognita, 2011. ISBN 978-952-5697-36-0. (suomeksi)
  • Danielsen, Hanne-Luise (päätoimittaja): Aivojen arvoitukset: Suurimmat läpimurrot – matkalla vuoteen 2050. Bonnier, 2016. ISBN 978-82-535-3542-5.
  • MacDonald, Matthew: Aivot: käyttäjän käsikirja. Docendo, 2009. ISBN 978-951-0-35535-0.
  • Juul Nielsen, Lotte (päätoimittaja): Monipuoliset aivot. Bonnier, 2009. ISBN 978-82-535-3052-9.

Viitteet

  1. a b c d e f g h i j Carter et al. 2016, s. 44–45.
  2. Aivojen arvoitukset 2016, s. 24.
  3. a b Michael Gazzaniga: Are human brains unique? 4.9.2008. Edge.org. Viitattu 26.8.2016.
  4. Carter et al. 2016, s. 52–53.
  5. Turunen, Seppo: Biologia: Ihminen, s. 91–92, 180. 5.–7. painos. WSOY, 2007. ISBN 978-951-0-29701-8.
  6. Carter et al. 2016, s. 56–57.
  7. Carter et al. 2016, s. 57.
  8. Monipuoliset aivot 2009, s. 12–13.
  9. Carter et al. 2016, s. 64–65.
  10. Aivorunko, Duodecimin Terveyskirjasto
  11. a b Carter et al. 2016, s. 62–63.
  12. Hiltunen, Erkki et al: ”7.4 Keskushermosto”, Galenos – johdanto lääketieteen opintoihin, s. 212. Helsinki: WSOYpro Oy, 2010. ISBN 978-951-0-33085-2.
  13. a b c Monipuoliset aivot 2009, s. 14–15.
  14. a b c Carter et al. 2016, s. 68–69.
  15. a b c d Suzana Herculano-Houzel: The Human Brain in Numbers: A Linearly Scaled-up Primate Brain National Center for Biotechnology Information, U.S. National Library of Medicine. 2009. Viitattu 29.8.2016.
  16. a b Aivoihin mahtuukin 10 kertaa luultua enemmän muistoja – "Tämä on todellinen pommi" Taloussanomat.fi. Viitattu 23.1.2016. fi-FI
  17. Carter et al. 2016, s. 42–43.
  18. Aivot eivät tunne mitään Tieteen Kuvalehti. 14/2005. Viitattu 19.10.2016.
  19. a b Risto Ilmoniemi: Aivojen rakenne ja toiminta BioMag-laboratorio / Lääkintätekniikan keskus / Helsingin yliopistollinen keskussairaala. Viitattu 26.10.2016.
  20. Hans Feneis: Anatomisches Bildwörterbuch, 4. painos, s. 200–203. Stuttgart: Georg Thieme Verlag, 1974. ISBN3-13-330104-7.
  21. David Mikkelson: The Ten-Percent Myth Snopes.com. 25.7.2014. Viitattu 7.8.2016.
  22. Shulman R. , Rothman D., Behar K., Hyder F.: Energetic basis of brain activity: implications for neuroimaging. Trends in Neurosciences, 2004, 27. vsk, nro 8, s. 489-495. (englanniksi)
  23. Joseph C. LaMannaAffiliated withDepartment of Anatomy, Case Western Reserve University, Nicolas Salem, Michelle Puchowicz, Bernadette Erokwu, Smruta Koppaka, Chris Flask, Zhenghong Lee: Ketones Suppress Brain Glucose Consumption Advances in Experimental Medicine and Biology. Springer Link. Viitattu 29.8.2016.
  24. a b c d e f Monipuoliset aivot 2009, s. 48–49.
  25. Aivojen arvoitukset 2016, s. 14–15.
  26. a b c Tuula Kinnarinen: Kivikauden kokki teki meistä ihmisiä Tiede. 9.6.2011. Viitattu 21.6.2016.
  27. Aivojen arvoitukset 2016, s. 15.
  28. Aivojen arvoitukset 2016, s. 12–13.
  29. Graham Brown, Stephanie Fairfax, Nidhi Sarao, S. Anonymous: Human Evolution Tree of Life Project. 2006. Viitattu 25.8.2016.
  30. Aivojen arvoitukset 2016, s. 8.
  31. Ben Shephard: Sapiens: A Brief History of Humankind review – thrilling story, dark message The Guardian. 21.9.2014. Viitattu 5.10.2016.
  32. Aivojen arvoitukset 2016, s. 10–11.
  33. Kathleen McAuliffe: If Modern Humans Are So Smart, Why Are Our Brains Shrinking? Discover Magazine. 20.1.2011. Viitattu 1.10.2016.
  34. a b c d e f Carter et al. 2016, s. 202–203.
  35. MacDonald 2009, s. 235.
  36. MacDonald 2009, s. 237–238.
  37. MacDonald 2009, s. 239.
  38. MacDonald 2009, s. 242.
  39. a b c Carter et al. 2016, s. 206–207.
  40. Tiede: Uuden opettelu pitää skarppina. Tiede 12/2013, 2013, s. 13.
  41. Aivojen arvoitukset 2016, s. 14–15.
  42. Aivojen arvoitukset 2016, s. 13.
  43. Aivojen arvoitukset 2016, s. 34.
  44. Carter et al. 2016, s. 191–193.
  45. Aivojen arvoitukset 2016, s. 28–32.
  46. Kendra Lechtenberg: Ask a Neuroscientist: Does a bigger brain make you smarter? 24.5.2014. Stanford Neurosciences institute. Viitattu 19.8.2016.
  47. a b c Carter et al. 2016, s. 194–195.
  48. Scans see 'gay brain differences' BBC News. 16.6.2008. Viitattu 19.8.2016.
  49. Carter et al. 2016, s. 196–197.
  50. Carter et al. 2016, s. 198–199.
  51. Carter et al. 2016, s. 38–39.
  52. Carter et al. 2016, s. 76–77.
  53. Carter et al. 2016, s. 110–111.
  54. Carter et al. 2016, s. 112–113.
  55. Carter et al. 2016, s. 114–115.
  56. Carter et al. 2016, s. 144–145.
  57. a b Carter et al. 2016, s. 146–147.
  58. Carter et al. 2016, s. 154–157.
  59. Carter et al. 2016, s. 120–121.
  60. Tuula Kinnarinen: Peilisolut auttavat ymmärtämään muita Tiede.fi. 1.11.2005. Viitattu 5.9.2016.
  61. Carter et al. 2016, s. 124–125.
  62. Damasio, Antonio: Itse tulee mieleen : tietoisten aivojen rakentaminen. alkuteos: Self comes to mind. Helsinki: Terra Cognita, 2011. ISBN 978-952-5697-36-0. (suomeksi)
  63. Aivojen arvoitukset 2016, s. 52.
  64. Kim, Jaegwon; Honderich, Ted (toim.): Problems in the Philosophy of Mind. Oxford Companion to Philosophy. Oxford: Oxford University Press, 1995.
  65. Aivojen arvoitukset 2016, s. 63.
  66. a b c Carter et al. 2016, s. 184–185.
  67. Aivojen arvoitukset 2016, s. 60.
  68. Gorm Palmgren: Uni koostuu neljänlaisista osista Tieteen Kuvalehti. 10.6.2010. Viitattu 13.10.2016.
  69. a b c d Carter et al. 2016, s. 214–215.
  70. Carter et al. 2016, s. 224.
  71. Carter et al. 2016, s. 223, 231.
  72. Psykiatria HUS Sairaanhoito. Viitattu 11.10.2016.
  73. Neurologia HUS Sairaanhoito. Viitattu 11.10.2016.
  74. Carter et al. 2016, s. 8–9.
  75. Carter et al. 2016, s. 12–13.
  76. Aivojen arvoitukset 2016, s. 108–109.
  77. Aivojen arvoitukset 2016, s. 113.
  78. Monipuoliset aivot 2009, s. 110.
  79. Monipuoliset aivot 2009, s. 110, 112.
  80. Monipuoliset aivot 2009, s. 114, 115.

Kirjallisuutta

  • Churchland, Patricia Smith: Neurofilosofia. (Brain-wise: Studies in neurophilosophy, 2002.) Suomentanut Kimmo Pietiläinen. Helsinki: Terra cognita, 2004. ISBN 952-5202-81-X.
  • Dennett, Daniel C.: Tietoisuuden selitys. (Alkuteos: Consciousness explained, 1991.) Suomentanut Tiina Kartano. Helsinki: Art house, 1999. ISBN 951-884-190-X.
  • Eagleman, David: Incognito: Aivojen salattu elämä. (Incognito: The secret lives of the brain, 2011.) Suomentanut Jaakko Kankaanpää. Helsinki: Avain, 2012. ISBN 978-951-692-911-1.
  • Gazzaniga, Michael S.: Eettiset aivot. (The ethical brain, 2005.) Suomentanut Kimmo Pietiläinen. Helsinki: Terra cognita, 2006. ISBN 952-5202-97-6.
  • Järvilehto, Timo: Missä sielu sijaitsee? Psyykkisen toiminnan hermostollinen perusta. Oulu: Pohjoinen, 1987. ISBN 951-749-180-8.
  • LeDoux, Joseph: Synaptinen itse: Miten aivot tekevät minusta minut. (Synaptic self: How our brains become who we are, 2002). Suomentanut Kimmo Pietiläinen. Helsinki: Terra cognita, 2003. ISBN 952-5202-57-7.
  • Soinila, Seppo: Aivot: Pidä huolta pääomastasi. Aikaisempi nimeke: Ajattele aivojasi (2003). Helsinki: Duodecim, 2009. ISBN 978-951-656-269-1.

Aiheesta muualla

Commons
Commons
Wikimedia Commonsissa on kuvia tai muita tiedostoja aiheesta Ihmisaivot.