Geometrinen konstruktiotehtävä

Wikipedia
Loikkaa: valikkoon, hakuun
Ympyrän neliöimisen ongelma on kiinnostanut myös alkemisteja. Kuva Michael Maierin kirjasta Atalanta Fugiens, 1618.

Geometrisella konstruktiotehtävällä tarkoitetaan geometriassa tehtävää, jossa on annettu jokin alkuehto, josta lähtien pitää harpin ja viivaimen avulla käyttämällä konstruoida eli tiettyjä täsmällisiä sääntöjä noudattaen piirtää jokin kuvio.

Geometrisessa konstruktiossa käytettävät harppi ja viivain ovat idealisoituja työkaluja, joiden käyttäminen vastaa Eukleideen ensimmäisten kolmen aksiooman soveltamista. Täsmällisemmin sanottuna oletetaan:

  1. Minkä tahansa kahden pisteen väliin voidaan piirtää jana
  2. Mikä tahansa jana voidaan jatkaa suoraksi. Viivaimella ei voi mitata etäisyyksiä (katso kuitenkin edempänä neusis-konstruktioista).
  3. Mikä tahansa annettu piste keskipisteenä ja annettujen kahden pisteen välinen etäisyys säteenä voidaan piirtää ympyrä.

Viivainta ei siis käytetä janojen mittaamiseen, mutta etäisyyden siirtäminen harpilla on helppo tehtävä. Italialainen matemaatikko Lorenzo Mascheroni osoitti vuonna 1797, että kaikki harpilla ja viivaimella tehtävät konstruktiot voi tehdä pelkällä harpilla (Mohrin–Mascheronin lause).

Geometriset konstruktiot askarruttivat jo antiikin matemaatikoita. Esimerkiksi Eukleideen Elementa-teoksessa esitetään suuri joukko konstruktiotehtäviä ja niiden ratkaistut. On kuitenkin osoittautunut, että kaikkia tällaisia tehtäviä ei voida ratkaista pelkästään harpilla ja viivaimella. Sen tutkiminen, mitkä tehtävät voidaan näin ratkaista ja mitkä ei, johti lopulta 1800-luvulla abstraktin algebran kehittymiseen.

Kolme suurta probleemaa[muokkaa | muokkaa wikitekstiä]

Antiikin kolmena suurena matematiikan ongelmana tunnetaan kolme konstruktiotehtävää:

  1. ympyrän neliöiminen (on konstruoitava neliö, jonka pinta-ala on sama kuin annetun ympyrän),
  2. kulman kolmiajako eli kulman jakaminen kolmeen yhtäsuureen osaan ja
  3. kuution kahdentaminen (tunnetaan myös nimellä Deloksen probleema: on konstruoitava kuutio, jonka tilavuus on kaksi kertaa niin suuri kuin annetun kuution).

Näiden tehtävien ratkaiseminen pelkästään harpin ja viivoittimen avulla on lopullisesti osoitettu mahdottomiksi 1800-luvulla (ks. edempänä). Todistukset niiden mahdottomuudesta ovat kuitenkin hyvin abstrakteja, minkä vuoksi jotkut amatöörigeometrit elättelevät yhä turhaa toivoa konstruktioiden mahdollisuudesta, ja yliopistojen matematiikan laitoksille tarjotaan jatkuvasti eri tavoin virheellisiä ratkaisuja.

Ympyrän neliöiminen voidaan todistaa mahdottomaksi huomaamalla, että harpilla ja viivaimella saatujen reaalilukujen kunnan laajennuksen aste on kakkosen potenssi reaalilukujen kunnan suhteen, kun taas ympyrän neliöimisen ollessa mahdollista olisi luvun \pi minimaalipolynomin oltava kakkosen potenssi. Mutta koska \pi on transkendenttiluku, on ympyrän neliöiminen harpilla ja viivaimella mahdotonta.

Kulman kolmijaon mahdottomuus harpilla ja viivaimella perustuu jälleen algebrallisten laajennusten asteisiin. Kulman kolmijako johtaa aina jaottomaan kolmannen asteen yhtälöön, joka ei ole kakkosen potenssi. Helpoiten tämä huomataan kehittämällä cos (3 \alpha) kolmannen asteen yhtälöksi cos (3 \alpha)=4 cos^3 \alpha-3 cos \alpha. Kun valitaan \alpha=2\pi/3, päädytään jaottomaan yhtälöön 8x^3-6x+1=0, missä on merkitty x:=cos \alpha.

Kuution kahdentaminen johtaa luvun 2 kuutiojuuren (\sqrt[3]{2}) konstruoimiseen. Tämän minimaalipolynomi kunnan \mathbb{Q} suhteen on x^3-2, joka on esimerkiksi Eisensteinin kriteerion perusteella jaoton. Näin ollen harpilla ja viivoittimella ei voida piirtää janaa, jonka pituus on yhtä suuri kuin annetun janan pituus kerrottuna \sqrt[3]{2}:lla, eikä siis myöskään kahdentaa kuutiota.

Säännölliset monikulmiot[muokkaa | muokkaa wikitekstiä]

Niin ikään säännöllisen monikulmion piirtäminen askarrutti aikoinaan matemaatikoita. Säännöllinen kolmi- ja nelikulmio eli tasasivuinen kolmio ja neliö voidaan helposti piirtää harpilla ja viivoittimella, ja jo antiikin aikana osattiin täten piirtää myös säännöllinen viisikulmio. Carl Friedrich Gauss osoitti vuonna 1798, että säännöllinen p-kulmio voidaan konstruoida geometrisesti ainakin, jos p on 2:n potenssi, Fermat'n alkuluku tai 2:n potenssien ja erisuurten Fermat'n alkulukujen tulo. Tunnetut Fermat'n alkuluvut ovat 3, 5, 17, 257 ja 65537. Näin ollen myös esimerkiksi säännöllinen 17- ja 257-kulmio voidaan piirtää harpilla ja viivoittimella, joskin konstruktiot ovat sangen moni­mutkaisia. Hän julkaisi tuloksensa kirjassaan Disquisitiones arithmeticae vuonna 1801 ja arveli myös, että muita konstruoitavia säännöllisiä monikulmioita ei ole, minkä kuitenkin todisti vasta Pierre Wantzel vuonna 1836. Wantzelin todistuksen ansiosta voitiin vastata täsmällisesti siihen kysymykseen, mitkä monikulmiot voidaan konstruoida geometrisesti: ne, joissa sivujen lukumäärän parittomat alkutekijät ovat erisuuria Fermat'n alkulukuja. Sataa pienemmistä sivujen luku­määristä tämän ehdon toteuttavat seuraavat: 3, 4, 5, 6, 8, 10, 12, 15, 16, 17, 20, 24, 30, 32, 34, 40, 48, 50, 51, 60, 64, 68, 80, 85 ja 96.

Yleisesti pätee seuraava lause:

Luku \alpha on konstruoituva jos ja vain jos \alpha kuuluu laajennukseen \mathbb{Q}[\sqrt{a_1},\ldots,\sqrt{a_r}], a_i\in\mathbb{Q}[\sqrt{a_1},\ldots,\sqrt{a_{i-1}}].

Neusis-konstruktiot[muokkaa | muokkaa wikitekstiä]

Antiikin aikanakin tehtiin konstruktioita myös monipuolisemmalla työkalupakilla, ns. neusis-konstruktioita. Neusis-konstruktiossa on luvallista merkitä annettu etäisyys suoralle ja sitten "liu'uttaa" suora haluttuun asemaan. Tavallaan käytössä on siis mittaviivain. Arkhimedes jakoi kulman kolmeen osaan neusis-konstruktiolla. Myös kuution kahdentaminen on mahdollinen neusis-konstruktiona mutta ympyrän neliöiminen ei. Perinteeksi kuitenkin muodostui sallia konstruktioissa ainoastaan harpin ja viivaimen käyttö. On jopa suhtauduttu epäillen sellaisiin konstruktioihin, joiden alkuehtona oletetaan jotain, mitä ei voi harpin ja viivaimen avulla konstruoida, kuten säännöllinen yhdeksänkulmio tai kolmeen osaan jaettu kulma.

Katso myös[muokkaa | muokkaa wikitekstiä]

Seuraavissa artikkeleissa on selostettu konstruktion tekemistä.

Kirjallisuutta[muokkaa | muokkaa wikitekstiä]