Suora

Kohteesta Wikipedia
Loikkaa: valikkoon, hakuun
Tämä artikkeli kertoo geometrian käsitteestä. Ammattiliitto Suorasta on oma artikkeli.
Osa artikkelisarjaa
Geometria
Dodecahedron.svg

Tasogeometria
Piste
Suora
Käyrä
Taso
Pinta
Pinta-ala
Pituus
Kulma
Trigonometria

Ympyrä
Ellipsi
Monikulmio
Kolmio
Nelikulmio
Suorakulmio
Neliö
Suunnikas
Neljäkäs
Puolisuunnikas

Avaruusgeometria
Tilavuus
Avaruuskappale
Pallo
Kartio
Lieriö
Särmiö
Suuntaissärmiö
Suorakulmainen särmiö
Säännöllinen monitahokas
Platonin kappale
Tetraedri
Heksaedri eli kuutio
Oktaedri
Dodekaedri
Ikosaedri
Keplerin–Poinsot'n kappale

Euklidinen geometria
Paralleeliaksiooma

Epäeuklidinen geometria
Hyperbolinen geometria
Elliptinen geometria

Analyyttinen geometria

Geometriassa, topologiassa ja muilla näille rinnasteisilla matematiikan aloilla suora määritellään pisteen ominaisuuksien ja aksioomien avulla.

Jos suora katkaistaan ja toinen puolikas poistetaan, saadaan puolisuora eli säde. Jos puolisuora katkaistaan, saadaan puolisuora ja jana.

Määritelmä[muokkaa | muokkaa wikitekstiä]

Antiikin määritelmä[muokkaa | muokkaa wikitekstiä]

Antiikissa suora määriteltiin kahden pisteen ja viivaimen avulla. Valitaan tasolta kaksi pistettä. Eukleideen Alkeissa esitetyn määritelmän mukaan kahden pisteen välille voidaan aina vetää jana tai viiva. Määritelmästä on jäänyt viivain pois, joten sitä ei voi pitää täysin matemaattisena. Määritelmä on pääpiirteissään seuraava:

  1. Viiva on leveydetön pituus.
  2. Viivan äärirajat ovat pisteitä.
  3. Suora viiva on viiva, joka lepää tasaisesti pisteillään. [1][2]
Ray (A, B, C).svg

Puolisuora eli säde piirretään silloin janan AB avulla niin, että janan toista päätä jatketaan samaan suuntaan pisteen C kautta äärettömän pitkälle. Kun sama toistetaan puolisuoran toiseen päähän, saadaan suora. Suora määräytyykin niiden kahden pisteen avulla, joiden kautta se kulkee. Antiikin määritelmässä korostetaan myös abstraktia käsitettä ääretön, joka tarkoitti geometriassa ”jatkamista loputtoman pitkälle”. [3]

Käyrä on suora, jos mitkä tahansa kolme suoran pistettä A, B ja C voidaan liittää kahteen janaan AB ja AC siten, että ne aina yhtyvät osan AB osalta. Toisaalta, suoran leveys on nolla, joten käyrä on suora koko pituudeltaan, jos sen projektio on piste, kun suoraa katsotaan sen kulkusuuntaan. [3][2] Tämä viimeinen testi on kirvesmiehille tuttu.

Analyyttisen geometrian määritelmä[muokkaa | muokkaa wikitekstiä]

Jana alkaa yhdestä pisteestä ja päättyy toiseen pisteeseen. Jana koostuu pisteistä, joita on tiheästi alku- ja loppupisteen välissä. Määritelmässä tiheällä tarkoitetaan ominaisuutta, että kahden mielivaltaisen lähellä toisiaan olevan pisteen väliin voidaan aina lisätä ainakin yksi piste lisää, mistä seuraa taas se, että pisteitä mahtuu pisteiden väliin äärettömästi.

Vaikka yhden pisteen pituus on 0, muodostuu äärettömän monen pisteen janalle ominaisuus pituus. Jana ei kuitenkaan ole leveä tai paksu, koska janalla olevilla pisteillä ei ole itsessään ominaisuutta leveys ja paksuus. Janan ominaisuudet ovat seurausta pisteiden ominaisuuksista ja niiden äärettömästä lukumäärästä.

Kukin janalla oleva piste sijaitsee omassa paikassaan. Paikka voidaan ilmoittaa numeerisesti määrittämällä esimerkiksi pisteen paikan etäisyys janan alkupisteestä. Tämä etäisyys on luku, jota kutsutaan pisteen koordinaatiksi.

Edelliseen tapaan voidaan määritellä myös pisteiden koordinaatit puolisuoralla ja suoralla. Puolisuoran pisteiden koordinaatit ovat esimerkiksi niiden etäisyys puolisuoran alkupisteestä. Suoralta tulee ensin valita piste, josta etäisyydet mitataan. Tätä pistettä kutsutaan origoksi. Pisteen etäisyys origosta on tällöin pisteen koordinaatti. Koska suora voidaan ajatella koostuvan origon molemmilla puolilla olevasta puolisuorasta, tulee koordinaatit olla positiivisia- ja negatiivisia reaalilukuja, riippuen siitä kummalla puolella origoa piste sijaitsee.

Pisteen koordinaatti janalla, puolisuoralla ja suoralla on aina yksi luku. Koska pisteen koordinaatteja tarvitaan vain yksi, sanotaan suoran olevan 1-ulotteinen olio eli sen dimensio on 1. Myös janan ja puolisuoran dimensio on 1. Koordinaattien avulla voidaan suoraa käsitellä numeerisesti esimerkiksi tietokoneella. [2]

Aksiomaattinen määritelmä[muokkaa | muokkaa wikitekstiä]

Nykyään suorat määritellään joukko-opin avulla käyttäen useita aksioomia, jotka määrittelevät useita ominaisuuksia, joita suoran tulee samanaikaisesti täyttää. Suoran ominaisuuksia kutsutaan aksioomiksi. Aksioomat on kirjoitettu niin, että pisteisiin viitataan isoilla kirjaimilla A, B ja C, ja suoriin pienillä kirjaimilla l ja a, tai pistepareilla esimerkiksi AB.

  1. Tasossa on olemassa osajoukkoja, joita kutsutaan suoriksi.
  2. Jokaista kahta eri pistettä ja kohti on olemassa yksi ja vain yksi suora jolla ja
  3. Jokaisella suoralla on ainakin kaksi pistettä. Tasossa on ainakin kolme pistettä, jotka eivät ole samalla suoralla.
  4. Suorille on määritelty relaatio välissä: Jos piste on pisteiden ja välissä, niin , ja ovat suoran eri pisteitä. Tällöin on myös pisteiden ja välissä.
  5. Jos ja ovat eri pisteitä, niin suoralla on piste siten että on pisteiden ja välissä.
  6. (Paschin aksiooma) Olkoon piste suoran ulkopuolella. Olkoon suora ja , , . Jos leikkaa janan , niin se leikkaa ainakin toisen janoista ja .

Suora analyyttisessa geometriassa[muokkaa | muokkaa wikitekstiä]

Suora yksiulotteisessa avaruudessa[muokkaa | muokkaa wikitekstiä]

Suora täyttää yksiulotteisen avaruuden kokonaan, jolloin kaikki avaruuden pisteet ovat suoran pisteitä. Kutakin pistettä vastaa jokin koordinaatti, joka on pisteen etäisyys origoksi valitusta pisteestä. Pisteen koodinaatti on reaaliluku .

Suora kaksiulotteisessa avaruudessa[muokkaa | muokkaa wikitekstiä]

Kaksiulotteinen avaruus tarkoittaa ääretöntä tasoa, jonne voidaan sijoittaa suora mielivaltaisesti. Koska suoran pisteet ovat koordinaattipareja , muodostavat pisteiden koordinaatit relaation. Suoran pisteisiin pääsee käsiksi usealla erilaisella lähestymistavalla.

Kaksiulotteinen parametriesitys[muokkaa | muokkaa wikitekstiä]

Suora voidaan määritellä kahden pisteen ja avulla. Suoran mikä tahansa kolmas piste voidaan ilmaista lausekkeella, jonka ”koordinaattina” on parametri

Jos suoran pisteet ovat kaksiulotteisia, saadaan ja koordinaateille parametrimuotoinen esitys

 eli 

missä ja ovat kulmakertoimia.

Kaksiulotteinen vektoriesitys suuntavektorin avulla[muokkaa | muokkaa wikitekstiä]

Sama parametrimuotoinen esitys voidaan ilmaista parametrimuotoisena vektoriesityksenä, jossa pisteet esitetään pystyvektoreilla


Jos merkitään ja saadaan suoran pisteiden vektoriksi


Vektoria kutsutaan suuntavektoriksi ja vektori on yksi suoran pisteen paikkavektori.

Suora karteesisessa koordinaatistossa. Luku on suoran kulmakerroin ja luku 1 sen vakiotermi.

Suoran yhtälö[muokkaa | muokkaa wikitekstiä]

Edellisestä parametrimuotoisesta esityksestä voidaan muodostaa suoran koordinaateille tunnetumpi relaatioesitys. Ratkaistaan luvun lausekkeesta parametri

joka sijoitetaan y:n lausekkeeseen

eli

 

jota kutsutaan suoran kahden pisteen esitykseksi pisteillä ja Merkitsemällä saadaan yksinkertaisempi yhtälö

missä

Tämä on suoran pisteiden ja koordinaattien välinen relaatio , jota kutsutaan suoran yhtälöksi. Yhtälön tätä muotoa


kutsutaan termillä y:n suhteen ratkaistu muoto. Yhtälössä kerrointa kutsutaan kulmakertoimeksi ja lukua vakiotermiksi. Toisaalta mahdollinen on myös


jota kutsutaan termillä x:n suhteen ratkaistu muoto. Siinä on kulmakerroin ja vakiotermi. Jos y:n suhteen ratkaistusta muodosta kirjoitetaankin

saadaan yleinen muoto


missä ja Kerroin voidaan kirjoittaa kaksirivisenä determinanttina:

Kaksiulotteinen vektoriesitys normaalivektorin avulla[muokkaa | muokkaa wikitekstiä]

Suoran suunta voidaan esittää suuntavektorin asemasta normaalivektorilla, joka on kohtisuorassa suoraa vastaan eli myös suuntavektoria vastaan. Valitaan suuntavektorin suuntainen erotusvektori , jossa on yksi suoran pisteiden paikkavektori. Merkitään normaalivektoria . Silloin nämä ovat kohtisuorassa ja niiden pistetulo on nolla


eli

.

Viimeisestä vaiheessa

missä


Normaalivektorin koordinaatit ja ovat suoran normaalimuotoisen yhtälön kertoimet.

Muita suoran muodostamistapoja[muokkaa | muokkaa wikitekstiä]

Kulmakertoimen avulla[muokkaa | muokkaa wikitekstiä]

Jos pisteet ja ovat eräät suoran pisteistä, ja suoran yleinen piste merkitään , voidaan suoran kulmakerroin ilmaista kahdella tavalla:


Suoran yhtälö nollakohtien avulla[muokkaa | muokkaa wikitekstiä]

Jos suora leikkaa kummatkin koordinaattiakselit, kutsutaan näiden pisteiden paikkaa akselilla nollakohdaksi. Nollakohtia vastaavat pisteet ovat ja ((englanniksi) intercept). Mikäli leikkauskohdat ovat muualla kuin origossa, saadaan suoran yhtälöksi


Suoran yhtälö etäisyydellä origosta[muokkaa | muokkaa wikitekstiä]

Jos suoralle piirretään origosta korkeusjana ja mitataan korkeusjanan suuntakulma sekä suoran etäisyys origosta, voidaan suoran yhtälö ilmaista


Suora kolmiulotteisessa avaruudessa[muokkaa | muokkaa wikitekstiä]

Kolmiulotteisen avaruuden suora voidaan määritellä vektorien avulla. Olkoot ja pisteiden paikkavektoreita kolmiulotteisessa avaruudessa . Aiemminkin kirjoitettiin

missä pisteet on korvattu kolmiulotteisilla paikkavektoreilla. Vektorimuotoinen parametriesitys näyttää pystyvektoreilla kirjoitettuna


Parametrin kertoimena olevaa vektorierotusta

kutsutaan suuntavektoriksi. Suora on suuntavektorinsa kanssa yhdenssuuntainen. Pistettä

kutsutaan paikkavektoriksi. on eräs suoran pisteistä. Suoran vektoriesitys voidaan ilmaista yksinkertaisemmin


Vektorimuotoisesta parametriesityksestä voidaan siirtyä suoraan parametrimuotoiseen esitykseen


Suora voidaan avaruudessa määritellä myös kahden tason leikkauksena.

Lähteet[muokkaa | muokkaa wikitekstiä]

  • Väisälä K.: Geometria. Porvoo: Wsoy, 1959. Teoksen verkkoversio (pdf).
  • Weisstein, Eric W.: Line (Math World - A Wolfram Web Resource) Wolfram Research. (englanniksi)
  • Weisstein, Eric W.: Line-Line Intersection (Math World - A Wolfram Web Resource) Wolfram Research. (englanniksi)
  • Weisstein, Eric W.: Line-Line Angle (Math World - A Wolfram Web Resource) Wolfram Research. (englanniksi)
  • Weisstein, Eric W.: Skew Lines (Math World - A Wolfram Web Resource) Wolfram Research. (englanniksi)
  1. D. E. Joyce: Elementa, kirja I, Clakin Yliopisto, 1996
  2. a b c Weisstein, Eric W.: Line, Wolfram Mathworld
  3. a b Väisälä: Geometria, ss. 1-3