Puolisuora
Puolisuora eli säde on geometriassa suoran puolikas. Se voidaan määritellä esimerkiksi niin, että valitaan ensin kaksi pistettä ja , josta valitaan alkupisteeksi ja kauttakulkupisteeksi. Puolisuora piirretään asettamalla viivain kulkemaan pisteiden kautta ja vetämällä viiva aloittaen pisteestä ja jatkaen pisteen kautta eteenpäin. Toinen tapa määritellä se on valita suora ja siltä haluttu piste A. Suora katkaistaan pisteen kohdalta, jolloin syntyy kaksi puolisuoraa. Puolisuora merkitään usein , jos alkupiste on sovittu :ksi, tai , jos halutaan korostaa suuntaa. Merkinnät luetaan silloin "puolisuora AB".[1][2]
Ominaisuuksia
[muokkaa | muokkaa wikitekstiä]Puolisuoralla on lähes kaikki suoran ominaisuudet, mutta suoralta puuttuu alkupiste. Puolisuoraa käytetäänkin tilanteissa, jossa halutaan aloittaa suora tietystä pisteestä ja osoittaa suoralle suunta siitä eteenpäin. Alkupiste saattaa olla origo, josta leviää ympärille säteitä, tai kolmion kärki, josta sivujen jatkeet erkanevat.[3][1]
Puolisuora lukusuoralla
[muokkaa | muokkaa wikitekstiä]Lukusuoralla puolisuoraa voidaan pitää puoliavoimena välinä. Puolisuoran pisteet voidaan ilmaista samanlaisella yhtälöllä kuin janalla ja suoralla. Silloin puolisuoran pisteen -koordinaatti ilmaistaan alkupisteen -koordinaatin ja kauttakulkupisteen -koordinaatin avulla
missä Janalla :n suurin arvo on 1, ja suoralla saa kaikki reaalilukuarvot.[1][4]
Puolisuora tasolla
[muokkaa | muokkaa wikitekstiä]Tasolla oleva puolisuora
missä [3]
Puolisuora avaruudessa
[muokkaa | muokkaa wikitekstiä]Avaruudessa eli tilassa käytetään yleisesti kolmea koordinaattia pisteiden paikan esittämisessä. Janan pisteet voidaan esittää vastaavasti
missä
Katso myös
[muokkaa | muokkaa wikitekstiä]Lähteet
[muokkaa | muokkaa wikitekstiä]- Tammi: Matematiikan teoriakirja Kolmio 2009
- Väisälä K.: Geometria. Porvoo: Wsoy, 1959. Teoksen verkkoversio (pdf).
Viitteet
[muokkaa | muokkaa wikitekstiä]- ↑ a b c Weisstein, Eric W.: Ray (Math World – A Wolfram Web Resource) Wolfram Research. (englanniksi)
- ↑ Väisälä: Geometria, ss. 2
- ↑ a b Weisstein, Eric W.: Line (Math World – A Wolfram Web Resource) Wolfram Research. (englanniksi)
- ↑ Weisstein, Eric W.: Interval (Math World – A Wolfram Web Resource) Wolfram Research. (englanniksi)
Kirjallisuutta
[muokkaa | muokkaa wikitekstiä]- Kivelä, Simo K.: Algebra ja geometria. Espoo: Otatieto, 1989. ISBN 951-672-103-6.