Solukalvo

Wikipedia
Loikkaa: valikkoon, hakuun
Eukarioottisolun solukalvon rakenne

Solukalvo (plasmalemma eli plasmolemma) on jokaisessa solussa ja kaikien eliöiden solua ympäröi kalvo. Eläinsolussa se on solun uloin kerros, mutta kasveilla, sienillä, levillä ja bakteereilla sitä ympäröi lisäksi soluseinä. Solukalvon paksuus on noin 7,5 nm. Lihassolun solukalvoa kutsutaan myös sarkolemmaksi.

Tehtävät[muokkaa | muokkaa wikitekstiä]

Solukalvo ympäröi solulimaa ja erottaa solun ympäristöstään. Solukalvon kautta eliö ottaa soluun ravintoaineita ja poistaa kuona-aineita tarpeensa mukaan. Tämä on erittäin tärkeää solun sisäisen tasapainon säilyttämisessä. Solukalvo myös vastaanottaa kemiallisten viestimolekyylien kuten hormonien ja hermoston välittäjäaineiden tuomaa informaatiota. Kudoksissa solukalvo osallistuu vierekkäisten solujen muodostamiin liitoksiin, kun solujen kalvoproteiinien välille muodostuu erilaisia sidoksia.

Rakenne[muokkaa | muokkaa wikitekstiä]

Solukalvo koostuu kahdesta vastakkaisesta fosfolipidikerroksesta. Fosfolipidit muodostuvat glyserolista, johon on esteröityneenä kaksi pitkäketjuista rasvahappoa ja fosforihappo. Rasvahappopää muodostaa fosfolipidin hydrofobisen osan, joka on kalvon keskellä. Hydrofiilisen osan puolestaan muodostaa fosforihappoon kiinnittynyt ryhmä, joka voi olla esimerkiksi hydrofiilinen aminohappo tai jokin muu ryhmä kuten koliini.

Osana solukalvon rakenteeseen kuuluvat myös integraaliset kalvoproteiinit, sfingolipidit ja kolesteroli. Integraaliset proteiinit, joihin kuuluvat ionikanavat, ionipumput, reseptorit ja rakenneproteiinit, voivat olla kalvoon osittain hautautuneina tai ulottua koko kalvon läpi. Integraalisiin proteiineihin liittyneet pitkät hiilihydraattiketjut muodostavat solukalvon uloimman osan, glykokalyksin, joka ulottuu pitkälle solunulkoiseen tilaan. Perifeeriset proteiinit eivät kuulu itse kalvon rakenteeseen, vaan ne ovat kiinnittyneinä integraalisiin proteiineihin ionisidoksin.

Integraaliset eli solukalvon rakenteeseen kuuluvat solukalvoproteiinit ovat keskeisessä asemassa solun aineenvaihdunnassa ja solun toimintojen säätelyssä sekä integroinnissa. Rakenneproteiineja on erityisen paljon niissä solukalvon kohdissa, joissa solu liittyy toiseen soluun tai soluväliaineeseen.[1]

Solukalvon kalvoproteiineista 30–40 prosenttia on natrium-kalium-ATPaaseja eli natrium-kaliumpumppuja. Ne kuluttavat suuren osan solun synnyttämästä energiasta ja ovat tärkein kalvoproteiinityyppi. Natrium-kaliumpumpun tehtävä on pumpata solusta ulos natriumioneja ja solun sisään kaliumioneja. Na+- ionia siirtyy ulos kolme kappaletta ja K+-ioneja sisään kaksi kappaletta jokaista ATP-molekyyliä kohden. Pumpun ansiosta solukalvon sisä- ja ulkopuolen välillä säilyy potentiaaliero.[1]

Natrium-kaliumpumpun lisäksi toinen tärkeä pumppu on kalsium-ATPaasi, joka sijaitsee lihassolun solulimakalvostossa eli sarkoplasmakalvostossa. Kalsium-ATPaasin tehtävä on pumpata kalsiumioneja sytoplasmasta sarkoplasmakalvostoon ja tällä tavoin ylläpitää sytoplasman erittäin pientä kalsiumpitoisuutta. Lihas voi supistua vain, mikäli kalsiumpitoisuus on tarpeeksi alhainen . ATPaasien kautta kulkee enintään 500–1000 ionia sekunnissa.[1]

Piirros solukalvon rakenteesta

Aineiden kuljetus solukalvon läpi[muokkaa | muokkaa wikitekstiä]

Kaikki soluun menevät ja sieltä poistuvat aineet joutuvat kulkemaan solukalvon läpi. Solukalvo säätelee siis tehokkaasti komponenttien kulkeutumista nestetilasta toiseen. Signaalivälityksellä soluun siirtyvät aineet eivät joudu kulkemaan solukalvon läpi, koska ne vaikuttavat soluun jo sen ulkopuolelta. Niille riittää sitoutuminen solun pintaan, joka aikaansaa muutoksen solukalvon sisäpuolisissa toiminnoissa.[1]

Solukalvon rasvahappojen häntien muodostama sisäosa on hydrofobinen. Jotta biomolekyyli voisi kulkea kalvon sisäosan läpi, pitää molekyylin olla jonkin verran liukoinen siihen. Rasvaliukoiset komponentit pääsevät helposti solukalvon läpi, mutta hydrofiilisyys estää ionien ja suurempien varauksellisten biomolekyylien läpipääsyn. Tämän vuoksi solukalvossa on oltava niille sopivia proteiineista koostuvia kanavia tai muita kuljetusproteiineja. Vesi pääsee solukalvon läpi vaivattomasti, mutta sille on lisäksi omat kanavansa, akvaporiinit, joiden määrää solu voi muutella ja siten säädellä veden kulkua solukalvon läpi. Veden lisäksi muun muassa urealla on oma kuljetin solukalvon läpi.[1]

Ionikanavat[muokkaa | muokkaa wikitekstiä]

Ionien kuljetuksesta solukalvon läpi vastaavat ionikanavat, jotka muodostuvat solukalvon useita kertoja lävistävistä alayksiköistä. Ionien kulkeutuminen solukalvon läpi onnistuu ionikanavaproteiinin keskellä olevan kanavan ansiosta. Tätä kanavaa reunustavat hydrofiiliset aminohapot. Lisäksi kanavassa on myös selektiivinen osa, joka päästää vain tietyntyyppiset ionit kanavan läpi. Ionikanavat päästävät tehokkaasti ioneja läpi, jopa yli miljoona ionia sekunnissa. Ionikanavaproteiini sulkeutuu sytoplasman tai solun ulkopinnan puolella olevien porttirakenteiden avulla. Ionikanavaproteiinien tämän hetkinen tunnettu määrä on noin 100 ja yksi solu voi sisältää jopa kymmeniä erilaisia kanavaproteiineja. Ionikanavat eroavat toisistaan porttirakenteiden osalta.[1]

Jännitteestä riippuvat ionikanavat aukeavat solukalvon jännitteen mukaan. Eräs jännitteestä riippuva ionikanava on hermosolun natriumkanava. Sellaisia ionikanavia, jotka ovat suurimman osan ajastaan auki, kutsutaan vuotokanaviksi, joita ovat esimerkiksi kaliumkanavat. Mikäli ionikanava aukeaa kemiallisen yhdisteen liittyessä porttirakenteeseen, on kyse ligandista riippuvasta kanavasta. Lihassolujen kationikanavat aukeavat asetyylikoliinin liittyessä kanavaproteiinin solunulkoiseen osaan, jolloin natriumia virtaa soluun ja aikaansaa lihassolun depolarisaation ja supistumisen.[1]

Kantajaproteiinit[muokkaa | muokkaa wikitekstiä]

Kantajaproteiinien tehtävänä on siirtää polaarisia molekyylejä, kuten esimerkiksi sokereita ja aminohappoja. Siirtäminen voi olla joko aktiivista (energiaa vaativaa) tai passiivista (fasilitoitunut kuljetus, ei vaadi energiaa). Kantajaproteiineja ovat esimerkiksi suolen epiteelisolujen glukoositransportterit, jotka ottavat glukoosia ensin suolesta ja siirtävät molekyylit sitten verenkiertoon. Glukoositransportterit saavat energiansa solujen ulko- ja sisäpuolen välillä vallitsevasta Na+- gradientista ja osittain myös soluissa vallitsevasta kalvopotentiaalista. [2]

Kuljetusmekanismit[muokkaa | muokkaa wikitekstiä]

Solu kontrolloi sytoplasman kemiallista koostumusta solun kalvojen avulla, jotka toimivat molekyylien ja viestien välittäjinä solun sisä- ja ulkotilan välillä. Aineiden kulkeutuminen soluun tai sieltä ulos tapahtuu jollain seuraavista menetelmistä: passiivinen diffuusio, fasilitoitunut kuljetus, aktiivinen kuljetus tai endosytoosi.[1]

Passiivinen diffuusio on täysin riippuvainen yhdisteen pitoisuuserosta solukalvon eri puolilla. Kulkeutumista tapahtuu suuremman pitoisuuden puolelta pienemmän pitoisuuden puolelle. Lipidit ja lipidiliukoiset molekyylit kulkeutuvat yleensä melko vapaasti solukalvon läpi. Myös kaasut, kuten happi ja hiilioksidi läpäisevät solukalvon helposti, mutta hydrofiilisten aineiden läpikulun solukalvo yleensä estää.[1]

Fasilitoitunut kuljetus tapahtuu pitoisuuseron suuntaan kuten passiivinen diffuusiokin. Kuljetus tapahtuu aina passiivisesti, eli siinä ei kulu energiaa, mutta se vaatii tapahtuakseen kuljettajamolekyylin, johon kuljetettava molekyyli sitoutuu kuljetuksen ajaksi kuten substraatti sitoutuu entsyymiin. Tätä menetelmää käyttävät hydrofiiliset aineenvaihduntatuotteet, kuten glukoosi ja aminohapot: esimerkiksi glukoositransportteri kuljettaa glukoosin lihassoluun. Kun solunulkoinen glukoosimolekyyli sitoutuu transportteriin, siinä tapahtuu muodonmuutos jolloin kuljettaja aukeaa ja päästää glukoosin solun sisäpuolelle.[1]

Aktiivinen kuljetus ei puolestaan riipu pitoisuuserosta, vaan se tapahtuu usein suurtakin pitoisuuseroa vastaan. Tämän takia se tarvitsee energiaa ATP:n muodossa. Aktiivinen kuljetus tapahtuu solukalvon läpi ulottuvien proteiinien avulla. Esimerkki aktiivisesta kuljetuksesta on natriumionien kuljetus ulos solusta natriumpumpun avulla.[1]

Endosytoosi taas on kuljetusmenetelmä, jossa isot molekyylit tai pienet kappaleet siirtyvät soluun siten, että solukalvo ympäröi vastaanotettavan materiaalin rakkulaan, joka lopulta kuroutuu irti solukalvosta solun sisään. Jos muodostuvat rakkulat ovat pieniä nesterakkuloita, kutsutaan kuljetusmekanismia pinosytoosiksi, muissa tapauksissa puhutaan fagosytoosista. Endosytoosi-termi sisältää molemmat prosessit. Päinvastaista tapahtumaa kutsutaan eksosytoosiksi.[1]

Lähteet[muokkaa | muokkaa wikitekstiä]

  1. a b c d e f g h i j k l Hiltunen, E., Holmberg, P., Kaikkonen, M., Lindblom-Ylänne, S. & Nienstedt, W.: Galenos IV - Ihmiselimistö kohtaa ympäristön, s. 89-100. WSOY, 2003. ISBN 951-0-28702-4.
  2. Heino, J., Vuento, M.: ”5”, Biokemian ja solubiologian perusteet, s. 171-172. WSOY, 2007. ISBN 978-951-0-32563-6.

Aiheesta muualla[muokkaa | muokkaa wikitekstiä]

Commons
Wikimedia Commonsissa on kuvia tai muita tiedostoja aiheesta solukalvo.