Tämä on hyvä artikkeli.

Fukushiman ydinvoimalaonnettomuus

Wikipediasta
Tämä on arkistoitu versio sivusta sellaisena, kuin se oli 25. marraskuuta 2018 kello 16.02 käyttäjän TuomoS (keskustelu | muokkaukset) muokkauksen jälkeen. Sivu saattaa erota merkittävästi tuoreimmasta versiosta.
Siirry navigaatioon Siirry hakuun

Fukushima I:n ydinonnettomuudet
Satelliittikuva tuhoutuneista reaktorirakennuksista 16. maaliskuuta 2011.
Satelliittikuva tuhoutuneista reaktorirakennuksista 16. maaliskuuta 2011.
Päivämäärä 11. maaliskuuta 2011
Tapahtumapaikka Fukushiman prefektuuri, Japani
(37°25′17″N, 141°01′57″E)
Syy maanjäristystä ja tsunamia seurasi INES-luokan 7 onnettomuus ydinvoimalassa
Loukkaantuneita 16 työntekijää loukkaantui vetyräjähdyksissä[1]
Fukushiman ydinvoimalan sijainti Japanissa

Fukushima I -voimalan ydinonnettomuudet (jap. 福島第一原子力発電所事故, Fukushima daiichi genshiryokuhatsudensho jiko) olivat joukko 11. maaliskuuta 2011 tapahtuneesta Tōhokun maanjäristyksestä ja sitä seuranneesta tsunamista seuranneita ydinonnettomuuksia. Japanin itärannikolla, 250 kilometriä Tokiosta pohjoiseen, sijaitsevan ydinvoimalan reaktorit 1, 2 ja 3 olivat pysähtyneet automaattisesti maanjäristyksen seurauksena. Maanjäristys vahingoitti sähkölinjoja, ja voimalaitos menetti yhteyden Japanin sähköverkkoon. Sen jälkeen laitos tuotti sähköä jäähdytysjärjestelmille dieselgeneraattoreilla. Noin 50 minuuttia myöhemmin tsunami tuhosi dieselgeneraattorit, voimalaitos jäi yli viikoksi kokonaan ilman sähköä, ja yksi kerrallaan sen jäähdytysjärjestelmät pysähtyivät. Kolmen reaktorin sydämessä polttoaine ylikuumeni ja lopulta suli. Radioaktiivisia aineita vapautui reaktorin polttoaineesta suojarakennukseen ja myöhemmin sieltä ympäristöön.[2]

Onnettomuus luokiteltiin seitsenportaisella INES-asteikolla korkeimpaan luokkaan 7.[3] Se on maailman toiseksi pahin ydinvoimalaonnettomuus Tšernobylin onnettomuuden jälkeen. Voimalaitoksen lähialueilta (noin 30 kilometrin alueelta) evakuoitiin noin 170 000 henkilöä. Suojelutoimenpiteiden ansiosta ihmisten saamat säteilyannokset jäivät vähäisiksi. Toisaalta itse evakuointi aiheutti kuolemantapauksia. Suoria säteilyn haittavaikutuksia ei ole havaittu.[4] WHO:n arvion mukaan säteilyaltistus saattaa hieman lisätä eniten altistuneiden ihmisten ja laitoksen työntekijöiden syöpäriskiä. Riskin kasvu on kuitenkin niin pieni, että sitä ei voida tilastollisesti havaita syöpään sairastuneiden lukumäärässä.[5]

Fukushima Daiichi -voimala

BWR Mark I -reaktorin poikkileikkaus, joita yksiköt 1-5 ovat. Reaktorin sydän (1) sisältää polttoainesauvat ja säätösauvat (39). Säätösauvojen liikutusyksikkö (31). Paineastiaa (8) ympäröi suojakerros (19), joka on suljettu betonitulpalla (2). Nosturia (26) käytetään siirtämään tulppa tilaan (3) polttoainesauvojen vaihdon ajaksi. Höyryä siirtyy höyrytilasta(11) vesitilaan (24) suuttimien kautta (14) tiivistymään vedeksi (18). Käytetyt polttoainesauvat (27) siirretään jäähtymään altaaseen (5).

Fukushima I -voimalassa on kuusi General Electricin kiehutusvesireaktoria (BWR), teholtaan 439–1 067 megawattia.[6] 1960-luvulla suunniteltujen reaktoreiden heikkouksia ja jäähdytysjärjestelmiä on kritisoitu jo vuonna 1972.[7] Laitoksen omistaa Tokyo Electric Power Company (TEPCO), ja se kytkettiin verkkoon maaliskuussa 1971. Samanlaisia laitoksia on Yhdysvalloissa 23[7] ja Euroopassa Espanjan Burgosissa.[8] Daiichi tarkoittaa japanin kielellä ensimmäinen, joten Fukushima I -voimalasta käytetään nimeä Fukushima Daiichi. 11 kilometriä etelämpänä sijaitsee Fukushima II -voimala eli Fukushima Daini. Siellä ei tapahtunut onnettomuutta.[9]

Tapahtumien kulku

Maanjäristys ja tsunami

11. maaliskuuta 2011 kello 14.46 Japanin aikaa tapahtui suuri, magnitudin 9,0 maanjäristys meren alla Japanin itärannikolla. Maanjäristys laukaisi reaktoreissa automaattisen pikasulun, joka pysäytti ketjureaktion. Ydinreaktori tarvitsee kuitenkin jäähdytystä vielä sammuttamisen jälkeen, koska reaktorissa olevat radioaktiiviset fissiotuotteet hajoavat ja tuottavat jälkilämpötehoa.[2]

Maanjäristys vahingoitti sähkölinjoja, ja voimalaitos menetti yhteyden Japanin sähköverkkoon. Laitoksella oli tällaista tilannetta varten 13 dieselgeneraattoria, jotka käynnistyivät automaattisesti ja tuottivat sähköä jäähdytysjärjestelmille. Tässä vaiheessa tilanne oli vielä hallinnassa.[2]

Maanjäristys aiheutti suuren, korkeudeltaan 14–15-metrisen tsunamin, joka osui Fukushiman laitosalueelle noin 50 minuuttia järistyksen jälkeen. Maanpinta oli laitosalueella kymmenen metriä merenpinnan yläpuolella, joten tsunami hukutti alueen yli neljä metriä veden alle ja tuhosi dieselgeneraattorit, jotka oli sijoitettu turbiinirakennusten kellareihin. Kuutosyksiköllä yksi generaattori pysyi toiminnassa, koska se oli sijoitettu korkeammalle. Vesi tuhosi myös laitosten sähköjärjestelmät, joten myöhemmin paikalle tuotuja siirrettäviä generaattoreita ei saatu yhdistettyä hätäjäähdytysjärjestelmiin.[2]

Fukushima 1:n alue ilmakuvassa vuonna 1975, jolloin kuudes reaktori oli vielä rakenteilla.

Fukushima Daiichi 1

Mallinnus reaktorirakennuksesta 1 ennen ja jälkeen räjähdyksen.

Ykkösyksikkö oli varustettu kahdella eristyslauhduttimella, joilla voidaan jäähdyttää reaktoria passiivisesti ilman sähkövirtaa. Lauhduttimessa on vesiallas, johon on upotettu lämmönvaihdin. Kun venttiilit avataan, kuuma höyry virtaa reaktorista putkea pitkin lämmönvaihtimeen, jossa se jäähtyy ja lauhtuu vedeksi. Vesi virtaa toista putkea takaisin reaktoriin ja jäähdyttää sitä. Maanjäristyksen jälkeen Fukushiman työntekijät avasivat ja sulkivat eristyslauhduttimien venttiilejä ja siten säätelivät reaktorin jäähdytystä. Tsunamin saapuessa lauhduttimen venttiilit sattuivat olemaan kiinni. Venttiilien avaamiseen tarvitaan sähköä, joten sähkökatkoksen jälkeen eristyslauhdutinta ei saatu enää toimimaan, koska venttiilien avaaminen ei onnistunut.[2]

Kun eristyslauhdutin lakkasi toimimasta, ykkösreaktoria ei enää saatu jäähdytettyä. Jälkilämpöteho alkoi kiehuttaa vettä pois reaktorista. Noin kolme tuntia maanjäristyksen jälkeen vedenpinnan korkeus reaktorissa oli laskenut polttoainesauvojen yläosan tasolle, ja reaktorin sydän alkoi ylikuumentua. Polttoainesauvojen suojakuoret oli tehty zirkoniumista, joka reagoi kuumentuneena kemiallisesti vesihöyryn kanssa tuottaen vetyä ja lämpöä. Tämä kiihdytti reaktorin sydämen kuumenemista, kunnes se alkoi sulaa. Reaktoria yritettiin jäähdyttää pumppaamalla vettä paloautoilla, mutta työ keskeytyi monta kertaa, koska veden kuljettaminen rakennuksen lähelle oli vaikeaa tsunamin ja maanjäristyksen jälkeisissä olosuhteissa.[9][2]

Reaktori oli sijoitettu paineenkestävään suojarakennukseen, jonka tehtävä oli estää radioaktiivisten aineiden pääsy ympäristöön onnettomuustilanteissa. Kun vesi kiehui reaktorissa, höyry purkautui suojarakennukseen, jolloin sen sisäinen paine lähti kasvamaan. Estääkseen suojarakennuksen rikkoutumisen ylipaineen takia työntekijät avasivat paineenalennusventtiilit iltapäivällä 12. maaliskuuta, noin vuorokausi maanjäristyksen jälkeen. Venttiilien kautta päästettiin höyryä ulos suojarakennuksesta ja sen painetta saatiin alennettua. Samalla ympäristöön pääsi kuitenkin radioaktiivisia fissiotuotteita, jotka olivat vapautuneet sulaneista polttoainesauvoista.[2]

Noin 25 tuntia maanjäristyksen jälkeen, 12. maaliskuuta kello 15.36 tapahtui suojarakennuksen ulkopuolella ykkösyksikön reaktorirakennuksessa vetyräjähdys. Räjähdyksen taustalla oli suojarakennuksen korkean paineen takia sen ulkopuolelle vuotanut vety, joka oli sekoittunut reaktorirakennuksen ilman kanssa muodostaen räjähtävän seoksen. Vetyräjähdys ei vahingoittanut suojarakennusta, mutta se tuhosi reaktorirakennuksen ylimmän kerroksen. Räjähdyksessä loukkaantui viisi työntekijää.[1][2]

Vuonna 2015 ykkösyksikön tilannetta tutkittiin myoniradiografialla. Kuvien perusteella näytti, että suurin osa reaktorin polttoaineesta oli sulanut ja valunut joko paineastian pohjalle tai, jos paineastia on sulanut puhki, suojarakennuksen lattialle.[10]

Fukushima Daiichi 2

Maanjäristyksen jälkeen kakkosreaktorin jäähdytys hoidettiin RCIC-järjestelmällä (Reactor Core Isolation Cooling). Kun jälkilämpö kiehuttaa vettä reaktorissa, syntyvä höyry virtaa RCIC-turbiinin läpi suojarakennukseen. Samalla akselilla turbiinin kanssa on pumppu, joka pumppaa jäähdytysvettä reaktoriin. Koska RCIC-järjestelmä tarvitsee sähköä vain säätöventtiilien ohjaukseen, se jatkoi toimintaansa tsunamin jälkeen, vaikka kaikki sähköt olivat poikki.[2]

Kakkosreaktorin onnettomuus eteni hitaammin kuin ykkös- ja kolmosreaktoreilla. Lähes kolme vuorokautta maanjäristyksen jälkeen 14. maaliskuuta kello 13 havaittiin, että vedenpinnan korkeus kakkosreaktorissa oli alkanut laskea. RCIC-järjestelmä oli toiminut siihen saakka itsestään ilman sähköä. Työntekijät yrittivät pumpata jäähdytysvettä reaktoriin palovesipumpuilla, mutta aluksi se ei onnistunut, koska reaktorin paine oli liian korkea. Työntekijät saivat avattua reaktorin paineenalennusventtiilin, ja samana päivänä noin kello 20 aloitettiin meriveden pumppaaminen kakkosreaktoriin paloautoilla.[2]

Kuuden aikaan aamulla 15. maaliskuuta laitosalueella kuultiin voimakas räjähdys. Samoihin aikoihin kakkosyksikön suojarakennuksen yksi painemittari oli lakannut toimimasta, mistä aluksi pääteltiin, että kakkosyksiköllä oli tapahtunut räjähdys. Myöhemmin kuitenkin havaittiin, että räjähdysääni olikin tullut nelosyksikön reaktorirakennuksesta. Kakkosyksiköllä ei tapahtunut vetyräjähdystä mahdollisesti siksi, että reaktorirakennuksen seinässä oleva luukku oli auennut ja vety pääsi poistumaan sen kautta.[11]

Ykkösyksikön tavoin kakkosreaktorista suojarakennukseen purkautunut höyry nosti suojarakennuksen painetta. Estääkseen suojarakennuksen rikkoutumisen ylipaineen takia työntekijät yrittivät avata sen paineenalennusventtiilejä, mutta tämä ei onnistunut. Työskentely korkeassa säteilytasossa ilman sähköä ja valoa oli vaikeaa. Aamulla 15. maaliskuuta havaittiin höyryn nousevan kakkosyksikön reaktorirakennuksesta. Samalla laitosalueella säteilyn annosnopeus nousi. Taustalla oli todennäköisesti kakkosyksikön suojarakennuksen rikkoutuminen ylipaineen vaikutuksesta. Höyry ja radioaktiiviset fissiotuotteet pääsivät rikkoutuneesta suojarakennuksesta reaktorirakennukseen ja sieltä ympäristöön.[2]

Vuonna 2016 kakkosyksikön tilannetta tutkittiin muiden tapaan myoniradiografialla. Kuvien perusteella näytti siltä, että suurin osa polttoaineesta oli sulanut ja valunut paineastian pohjalle.[12] Vuonna 2017 suojarakennukseen reaktorin alapuolelle työnnettiin kamera. Reaktorin alapuolella on metalliritilästä tehtyjä kävelytasoja huoltotöitä varten. Kuvien perusteella osa näistä ritilätasoista on romahtanut. Ritilätasojen päällä näkyy materiaalia, joka näyttää sulaneelta ja uudelleen jähmettyneeltä polttoaineelta, joka on purkautunut suojarakennukseen hajonneesta reaktorin paineastiasta. Materiaalista ei saatu näytettä, josta olisi voitu analysoida, onko se uraania vai jotain muuta.[13] Tammikuussa 2018 saatiin kameran avulla tutkittua suojarakennuksen lattiaa reaktorin alapuolella. Lattialla on soran näköistä materiaalia, joka on todennäköisesti sulanutta ja uudelleen jähmettynyttä polttoainetta. Lisäksi kuvissa näkyy polttoainenipun osia, jotka eivät ole sulaneet. Reaktorin paineastiassa täytyy siis olla melko suuri reikä, jonka läpi nämä osat ovat pudonneet. Kuvista ei voi arvioida lattialla olevan materiaalin määrää. Vielä ei siis tiedetä, kuinka suuri osa polttoaineesta on reaktorissa ja kuinka suuri osa suojarakennuksen lattialla. Kameran mukana oli säteilymittari. Annosnopeus suojarakennuksessa vaihteli välillä 7–42 Gy/h.[14]

Fukushima Daiichi 3

Kolmosyksikön jäähdytys maanjäristyksen jälkeen hoidettiin samanlaisella turbiinikäyttöisellä RCIC-järjestelmällä kuin kakkosreaktorilla. Erona oli, että kolmannella akut ja niihin liitetty sähköjärjestelmä säilyivät tsunamista huolimatta toiminnassa, joten tasavirtaa oli käytettävissä, vaikka dieselgeneraattorien kastuttua vaihtovirtaa ei enää ollut. Akuista saatavalla sähköllä valvomon mittausjärjestelmät toimivat, ja työntekijät pystyivät seuraamaan reaktorin painetta ja vedenpinnan korkeutta sekä säätämään RCIC-järjestelmän venttiilejä.[2]

Kolmosyksikön RCIC-jäähdytysjärjestelmä lakkasi toimimasta 12. maaliskuuta kello 11.36, noin 21 tuntia maanjäristyksen jälkeen. Toinen samantyyppinen turbiinikäyttöinen jäähdytysjärjestelmä (HPCI, High pressure coolant injection) käynnistyi noin tuntia myöhemmin, ja reaktoriin saatiin taas pumpattua vettä. Noin 36 tuntia maanjäristyksen jälkeen HPCI-järjestelmä pysäytettiin, koska reaktorin paine oli laskenut liian alas eikä järjestelmä enää toiminut kunnolla. Kolmosyksikön jäähdytys lakkasi siis toimimasta aamuyöllä 13. maaliskuuta.[2]

Reaktoriin saatiin pumpattua jäähdytysvettä paloautoilla saman päivän aamulla noin kello 9, yli 42 tuntia maanjäristyksen jälkeen. Samoihin aikoihin käynnistyi suojarakennuksen paineenalennus, eli höyryä ja sulaneesta polttoaineesta vapautuneita radioaktiivisia fissiotuotteita vapautui suojarakennuksesta ympäristöön ilmastointipiipun kautta. Työntekijöillä oli vaikeuksia pitää suojarakennuksen paineenalennusventtiilejä auki, koska siihen tarvittiin paineilmaa. Venttiilit sulkeutuivat ja avattiin uudelleen monta kertaa, ja rakennuksen paine nousi ja laski. Myös jäähdytysveden pumppaus reaktoriin paloautoilla keskeytyi useita kertoja.[2]

Kolmosyksikön reaktorirakennuksessa tapahtui vetyräjähdys 14. maaliskuuta kello 11.01 eli noin 68 tuntia maanjäristyksen jälkeen. Ykkösyksiköllä kaksi päivää aikaisemmin tapahtuneen räjähdyksen tapaan vety oli muodostunut höyryn ja zirkoniumin kemiallisessa reaktiossa reaktorin sydämen ylikuumentuessa. Vety oli vapautunut reaktorista suojarakennukseen, vuotanut sieltä korkean paineen takia ulos reaktorirakennukseen ja muodostanut ilman kanssa räjähtävän seoksen. Räjähdyksessä tuhoutui reaktorirakennuksen ylin kerros, ja 11 työntekijää loukkaantui.[1][2]

Vuonna 2017 kolmosyksikön tilannetta tutkittiin muiden yksiköiden tapaan myoniradiografialla. Kuvien perusteella näytti siltä, että suurin osa reaktorin polttoaineesta oli sulanut. Jonkin verran polttoainetta oli todennäköisesti jähmettynyt paineastian pohjalle, ja osa polttoaineesta on valunut rikkoutuneesta paineastiasta suojarakennuksen lattialle.[15]

Fukushima Daiichi 4

Maanjäristyksen aikaan nelosreaktori oli sammutettu huoltoseisokkia varten ja kaikki polttoaine oli siirretty reaktorista käytetyn polttoaineen varastoaltaaseen, joka sijaitsee suojarakennuksen ulkopuolella reaktorirakennuksessa. Altaassa oli noin 12 metriä vettä, joka toimi säteilysuojana. Polttoaineessa syntyvä jälkilämpö poistettiin jäähdyttämällä altaassa olevaa vettä. Kun tsunami katkaisi laitokselta sähköt, käytetyn polttoaineen varastoaltaan jäähdytys ei enää toiminut. Veden lämpötila alkoi nousta, ja lopulta vesi alkoi kiehua. Myöskään yksiköiden 1–3 käytetyn polttoaineen altaiden jäähdytys ei enää toiminut, mutta niissä oli paljon vähemmän polttoainetta ja siten matalampi jälkilämpöteho kuin nelosyksiköllä. Sen takia nelosyksikön polttoaineallas kuumeni paljon nopeammin.[16]

Sähkökatkoksen takia käytetyn polttoaineen altaan lämpötilamittaus ja vedenpinnan korkeusmittaus lakkasivat toimimasta. Työntekijät eivät tienneet, mikä tilanne altaassa on. Nelosyksikön reaktorirakennuksessa tapahtui vetyräjähdys kuuden aikaan aamulla 15. maaliskuuta, noin 87 tuntia maanjäristyksen jälkeen.[2][16] Aluksi luultiin, että yksikön käytetty polttoaine olisi ylikuumentunut ja vety olisi syntynyt siellä höyryn ja zirkoniumin reagoidessa kemiallisesti. Jopa Yhdysvaltain ydinturvallisuusviranomaisen johtaja Gregory Jaczko sanoi julkisuudessa, että polttoainealtaasta olisi loppunut vesi. Altaaseen yritettiin pudottaa vettä helikoptereilla ja suihkuttaa palokunnan vesitykeillä, mutta altaisiin päätyi vain vähän vettä.[17] Vasta 22. maaliskuuta, 11 päivää maanjäristyksen jälkeen, saatiin polttoainealtaaseen runsaammin vettä autoilla, joilla normaalisti pumpattiin betonia korkeiden rakennusten työmailla.[16]

Nelosyksikön käytetyn polttoaineen altaan tilannetta päästiin tutkimaan veteen upotetulla kameralla 7. toukokuuta 2011. Kuvista havaittiin, että polttoaine ei ollutkaan vaurioitunut.[16] Joulukuussa 2014 kaikki polttoaine saatiin poistettua altaasta.[18] Myöhemmin selvisi, että nelosyksikön räjähdys johtui vedystä, joka tuli kolmosyksiköstä yhteisen ilmanvaihtojärjestelmän kautta.[2]

Fukushima Daiichi 5 ja 6

Viitos- ja kuutosyksikkö oli maanjäristyksen aikaan sammutettu huoltoseisokkia varten. Kuudennella yksi dieselgeneraattori oli sijoitettu korkeammalle, eikä tsunami vahingoittanut sitä. Viitos- ja kuutosreaktorin sähköjärjestelmät oli liitetty toisiinsa, ja yhdellä toimivalla generaattorilla saatiin tuotettua sähköä molempien reaktorien jäähdytykseen. Siksi näillä reaktoreilla vältyttiin onnettomuudelta.[2]

Säteilyaltistus

Laskennallinen säteilyannos ensimmäisen vuoden aikana onnettomuuden jälkeen olettaen, että ihminen on ulkona 24 tuntia vuorokaudessa. Pahiten saastununeella alueella voimalaitoksen luoteispuolella annos olisi ollut yli 2 000 milliremiä eli 20 millisievertiä vuodessa.

Radioaktiivisen jodin ja cesiumin päästöjen arvioidaan olleen kymmenesosa Tšernobylin ydinvoimalaitoksen onnettomuuden päästöstä. Päästöistä iso osa kulkeutui tuulen mukana merelle. Lähialueilta evakuoitiin noin 170 000 henkilöä. Säteilyannokset jäivät vähäisiksi suojelutoimenpiteiden ansiosta. Evakuoidut saivat 1–10 millisievertin suuruisen säteilyannoksen. Kukaan ei sairastunut säteilysairauteen tai saanut hoitoa vaativia paikallisia säteilyvammoja. Evakuoinnissa kuoli 51 henkilöä, joista suuri osa oli hoitolaitoksissa olleita vanhuksia.[4][19] Suorien kuolemantapausten lisäksi evakuoitujen ihmisten kuolleisuus on lisääntynyt masennuksen, työttömyyden, alkoholismin ja itsemurhien takia. Monien tutkijoiden mielestä massiviset evakuoinnit aiheuttivatkin enemmän haittaa kuin hyötyä, koska monien ihmisten kohdalla vältetty säteilyannos oli melko pieni.[20] Esimerkiksi kilpirauhassyöpien asiantuntija Shunichi Yamashita Fukushiman lääketieteellisestä yliopistosta sanoi, että ”ihmiset olisivat voineet palata jo kuukauden päästä, kun radioaktiivinen jodi oli käytännössä kadonnut”.[21]

Ionisoivan säteilyn vaikutusten tieteellinen komitea (UNSCEAR) arvioi, että pidemmällä aikavälillä on epätodennäköistä, että Fukushiman onnettomuus aiheuttaisi väestössä tai voimalaitoksen työntekijöiden suuressa enemmistössä myöhempiä terveysvaikutuksia.[22] Maailman terveysjärjestö (WHO) julkaisi 28. helmikuuta 2013 raportin ydinonnettomuuden vaikutuksesta ihmisten terveyteen maailmanlaajuisesti. Raportin mukaan onnettomuuden lyhyt- ja pitkäaikaiset vaikutukset ovat olleet ja tulevat olemaan erittäin vähäisiä, lukuun ottamatta ydinvoimalan läheisyydessä sijaitsevia pahiten saastuneita alueita.[5]

Onntettomuuden aikana säteily ylitti voimalan lähialueella huomattavasti viranomaisten asettamat rajat, ja viranomaiset laajensivat suoja-aluetta 30 kilometrin säteelle.[23] Suomi ei suositellut joditablettien syöntiä Japanissa oleskeleville kansalaisilleen, toisin kuin Ruotsi.[24]

Fukushimasta peräisin olevia isotooppeja havaittiin 18. maaliskuuta 2011 myös Kaliforniassa Yhdysvalloissa. Säteilymäärät olivat kuitenkin niin pieniä, että ne alittivat selvästi luonnollisen taustasäteilyn eikä niistä ollut vaaraa terveydelle.[25] Suomessa ensimmäiset merkit Japanin onnettomuudesta peräisin olevista radioaktiivisista aineista havaittiin 23. maaliskuuta. Säteilyturvakeskuksen Helsingin toimitalon katolla olevasta sekä Rovaniemellä sijaitsevasta ilmankerääjästä havaittiin jodin isotooppia I-131 (radiojodi) alle millibecquerel kuutiometrissä ilmaa.[26]

Fukushimasta peräisin olevia isotooppeja on havaittu Japanissa ruoasta ja vedestä. Fukushiman alueella tuotettujen maataloustuotteiden käyttöä jouduttiin onnettomuuden jälkeen rajoittamaan. Kalastus kiellettiin voimalaitoksen edustalla. Myytävänä olevat elintarvikkeet ovat puhtaita, koska Japani on asettanut niiden radioaktiivisuuspitoisuuksille tiukat rajat.[18][19]

Onnettomuuden syyt

Onnettomuuden välitön syy oli tsunami, joka rikkoi dieselgeneraattorit, jotka tuottivat sähköä turvallisuusjärjestelmille. Onnettomuuden taustalta on löytynyt kuitenkin muitakin syitä.

Tsunamin korkeus oli 14–15 metriä merenpinnasta. Voimalaitoksen ympärillä maanpinta oli kymmenen metriä merenpinnasta. Aallonmurtajan korkeus oli 5,7 metriä.

Fukushiman ydinvoimala rakennettiin kymmenen metriä merenpinnan yläpuolelle. Tsunameista oli mittaustietoa muutaman sadan vuoden ajalta, ja korkein mitattu tsunami voimalan lähellä oli ollut 3,1 metriä, joten kymmenen metriä vaikutti turvalliselta korkeustasolta. Pohjoisempana oli mitattu paljon suurempia tsunameja, mutta sen ajateltiin johtuvan rannikon erilaisesta muodosta. 2000-luvulla voimayhtiö TEPCO analysoi mahdollisia tsunameja laskennallisesti ja arvioi, että 6,1-metrinen tsunami olisi mahdollinen. Toisella menetelmällä laskettiin, että laitokselle voisi osua jopa 15,7-metrinen tsunami, mutta TEPCO ei pitänyt laskentamenetelmää luotettavana eikä tehnyt sen takia laitosmuutoksia. Onnettomuuden aiheuttanut tsunami oli 14–15 metriä korkea. Mahdollisen tsunamin korkeus oli aliarvioitu, minkä seurauksena dieselgeneraattorit ja muut sähköjärjestelmät oli sijoitettu tulvalle alttiiseen paikkaan kellarikerrokseen.[27]

Olennainen osa ydinturvallisuutta on käyttökokemustoiminta: vaaratilanteista pyritään oppimaan ja estämään samanlaisen tapahtuman toistuminen. Fukushiman ykkösreaktorilla sattui vuonna 1991 tapaus, jossa vesiputki alkoi vuotaa turbiinirakennuksen kellarissa. Vesi valui oviaukosta tilaan, jossa dieselgeneraattorit sijaitsivat. Vaikka tapahtuma paljasti tilan alttiuden tulvariskeille, TEPCO ei tehnyt mitään estääkseen vastaavan tilanteen toistumisen eikä Japanin ydinturvallisuusviranomainen vaatinut sitä.[27]

Kaikilla kolmella onnettomuusreaktorilla oli puolipassiiviset jäähdytysjärjestelmät, joiden käynnistämiseen ja tehon säätämiseen tarvitaan sähköä (akuista saatava virta riittää tähän), mutta muuten ne toimivat ilman sähkövirtaa. Ykkösreaktorin puolipassiivisen jäähdytysjärjestelmän venttiilit sattuivat olemaan kiinni sillä hetkellä, kun tsunami aiheutti sähkökatkoksen, eikä järjestelmää saatu sen jälkeen käynnistettyä. Sen sijaan kakkos- ja kolmosreaktorin puolipassiiviset jäähdytysjärjestelmät jatkoivat toimintaansa sähkökatkoksesta huolimatta. Kakkosreaktorilla järjestelmä toimi paljon odotettua pidempään, lähes kolme vuorokautta, ja kolmannella reaktorillakin noin puolitoista vuorokautta. Puolipassiiviset järjestelmät olivat siis haavoittuvia sähkökatkoksessa, mutta kakkos- ja kolmosreaktoreilla niistä oli kuitenkin hyötyä, koska ne viivästyttivät reaktorin sydämen sulamista huomattavasti.[27]

Onnettomuuden aikana ykkös- ja kolmosreaktoreilla suojarakennuksen painetta alennettiin hallitusti päästämällä höyryä ulos paineenalennusventtiileiden kautta. Höyryn mukana ympäristöön pääsi kuitenkin myös radioaktiivisia aineita. Osa näistä aineista olisi voitu pidättää suodattimiin ja siten pienentää päästöjä ympäristöön, mutta Fukushiman suojarakennusten paineenalennusjärjestelmissä ei ollut suodattimia. Tämä oli tyypillistä 1960-luvulla suunnitelluille reaktoreille, mutta Japanissa suodattimien lisäämistä ei myöhemminkään katsottu tarpeelliseksi.[27]

Työntekijöiden toimintaa onnettomuuden aikana vaikeuttivat hankalat olosuhteet maanjäristyksen ja tsunamin jälkeen. Kulkuyhteydet laitokselle olivat huonot, koska maanjäristys oli katkaissut teitä. Tsunami oli levittänyt romua ympäri laitosaluetta, mikä vaikeutti autokuljetuksia alueella. Vetyräjähdykset reaktorirakennuksissa lennättivät vielä radioaktiivista betoniromua alueelle, mikä vaikeutti työntekijöiden toimintaa entisestään. Onnettomuustilanne jatkui pitkään, ja väsyneet työntekijät joutuivat työskentelemään useita päiviä.[27]

Fukushiman laitokselle oli tehty todennäköisyyspohjainen turvallisuusanalyysi (PSA, Probabilistic Safety Assessment), mutta se oli pahasti puutteellinen. Siinä analysoitiin vain laitoksen sisäisiä uhkia, kuten jäähdytysveden vuotoja, mutta jätettiin kokonaan huomioimatta tulvat, tsunamit ja äärimmäiset sääilmiöt. Aliarvioitu onnettomuustodennäköisyys aiheutti liiallisen luottamuksen laitoksen turvallisuuteen ja selittää, miksi turvallisuusparannuksia ei pidetty tarpeellisina. Japanin ydinturvallisuusviranomainen ei vaatinut tekemään kunnollista, kattavaa todennäköisyyspohjaista analyysiä, vaikka Kansainvälisen atomienergiajärjestön mukaan sellainen olisi paljastanut laitoksen turvallisuuden heikkoudet.[27]

Vanhojen ydinvoimaloiden turvallisuusparannuksia vaikeutti huoli ydinvoima-alan julkisuuskuvasta. Japanissa ajateltiin, että kansalaisten silmissä turvallisuusparannusten tekeminen tarkoittaisi sen myöntämistä, että ydinvoimalat eivät aikaisemmin olleetkaan turvallisia, vaikka näin oli vakuuteltu. Jatkuvan parantamisen periaatteen selittäminen kansalaisille saattaisi olla vaikeaa.[27]

Japanin ydinturvallisuusviranomainen ei vaatinut voimayhtiötä tekemään analyysejä Fukushiman voimalan käyttäytymisestä vakavassa onnettomuudessa. Japanilaiset tyytyivät analysoimaan lievempiä onnettomuustilanteita ja olettivat, että kaikissa sähkökatkostilanteissa sähköt pystytään palauttamaan nopeasti. Vakavien onnettomuuksien analysointia ei pidetty tarpeellisena, koska ”japanilaisia laitoksia pidetään (japanilaisten mielestä) tarpeeksi turvallisina onnettomuuksia ehkäisevien toimenpiteiden johdosta”, kuten IAEA kirjoitti vuonna 2007.[27]

Ennen Fukushiman onnettomuutta Japanin ydinturvallisuutta valvova viranomainen oli NISA (Nuclear and Industrial Safety Agency), jolla oli sama tehtävä kuin Suomessa Säteilyturvakeskuksella. IAEA on kritisoinut NISAn toimintaa. NISA oli kauppa- ja teollisuusministeriö METIn alainen, ja ministeriön tehtäviin kuului ydinvoiman käytön edistäminen. NISA ei siis ollut riippumaton viranomainen. NISAn työntekijöiden, kuten muidenkin valtion virkamiesten, odotettiin vaihtavan työtehtävää parin vuoden välein. Jatkuvien tehtävämuutosten takia työntekijöille ei kertynyt syvällistä asiantuntemusta työkokemuksen kautta. Myös rahoituksen vähentäminen heikensi NISAn resursseja. NISAlla ei ollut oikeutta laatia ydinvoimaloille sitovia turvallisuusvaatimuksia, vaan vaatimuksista päätettiin ylempänä valtionhallinnossa. NISAlla ei ollut oikeutta määrätä turvallisuusparannuksia vanhoihin ydinvoimaloihin, vaan riitti, että ne täyttivät vaatimukset, jotka olivat voimassa rakentamisluvan myöntämisen aikaan. Laki määräsi tarkasti, millaisia tarkastuksia NISA sai tehdä ydinvoimaloissa ja missä tilanteissa. Viranomaisella ei siis ollut oikeutta yllätystarkastuksiin. Onnettomuuden jälkeen Japani lakkautti NISAn ja perusti uuden viranomaisen NRA:n (Nuclear Regulation Authority), joka on ympäristöministeriön alainen. NRA uudisti kokonaan Japanin viranomaisvaatimukset ydinvoimaloiden turvallisuudesta.[27]

Onnettomuuden jälkihoito

Fukushiman voimalaitoksella työskenteli vuonna 2018 runsaat 4 000 henkilöä, jotka huolehtivat reaktorien jäähdytyksestä ja saastuneen veden puhdistuksesta, puhdistivat aluetta radioaktiivisista aineista ja valmistelivat reaktorien purkamista. Suurin osa voimalaitoksen alueesta on siivottu siten, ettei siellä tarvita muita suojavarusteita kuin kevyt hengityssuojain. Työntekijöiden saama keskimääräinen säteilyannos oli 0,25 millisievertiä kuukaudessa kesäkuussa 2018.[28]

Voimalaitoksen omistaja TEPCO aikoo poistaa reaktoreiden vaurioituneen polttoaineen ja sen jälkeen purkaa rakennukset. Tämän on arvioitu kestävän 30–40 vuotta. Vaurioituneen polttoaineen poistaminen on hyvin vaikea tehtävä. Suojarakennusten sisällä säteilytasot ovat niin korkeat, ettei ihminen voi mennä sinne. Suojarakennusten ulkopuolella reaktorirakennuksissa työntekijät voivat käydä, mutta eivät työskennellä pitkiä aikoja. Suunnitelmana on ensin puhdistaa reaktorirakennukset niin, että pitkäaikainen työskentely siellä onnistuisi. Sen jälkeen pyritään paikkaamaan suojarakennusten vesivuodot. Jos se onnistuu, voidaan rakennukset täyttää vedellä. Tämä helpottaa työskentelyä, sillä vesi on tehokas säteilysuoja ja estää radioaktiivisen pölyn leviämisen. Operaatiota vaikeuttaa myös se, että tilat ovat hyvin ahtaat ja niissä on paljon paksuja betoniseiniä ja teräsrakenteita, joita täytyy poistaa, jotta polttoaineeseen päästään käsiksi.[29]

IAEA:n työntekijöitä tarkastelemassa vesisäiliöitä Fukushiman ydinvoimalan alueella.

Reaktoreiden polttoaineessa syntyy edelleen jälkilämpöä, tosin paljon vähemmän kuin onnettomuuden aikana. Jälkilämmön poistamiseksi reaktoreihin pumpataan edelleen jäähdytysvettä. Reaktoreissa ja suojarakennuksissa olevien vuotojen takia vesi valuu lopulta reaktorirakennusten alimpiin kerroksiin. Lisäksi rakennuksiin valuu pohjavettä. Veteen liukenee radioaktiivisia aineita. Saastunutta vettä varastoidaan suuriin säiliöihin voimalaitoksen pihalla, koska sitä ei haluta päästää mereen.[29] Veden määrä lisääntyi säiliöissä vuonna 2017 noin 220 kuutiometriä päivässä. Määrä on vähentynyt, koska pohjaveden virtausta rakennuksiin on saatu vähennettyä jäädyttämällä rakennusten ympärillä olevaa maaperää. Vielä vuonna 2014 saastunutta vettä syntyi 470 kuutiometriä päivässä. Elokuussa 2018 laitosalueelle oli varastoituna noin miljoona kuutiometriä vettä.[28] Saastunutta vettä puhdistetaan Fortumin kehittämällä Nures-ioninvaihtomateriaalilla.[30] Poliittisesti hankala ongelma on vedessä oleva heikosti radioaktiivinen tritium, jota ei pystytä poistamaan. Esimerkiksi Yhdysvaltojen ydinturvallisuusviranomaisen entinen johtaja Dale Klein oli sitä mieltä, että vähän tritiumia sisältävä vesi voitaisiin päästää mereen, jossa se laimenisi nopeasti. Tämä on tosin herättänyt vastustusta etenkin japanilaisten kalastajien keskuudessa.[31]

Saastunutta aluetta voimalaitoksen ympärillä on puhdistettu muun muassa painepesureilla ja poistamalla kasvillisuutta ja maan pintakerrosta. Radioaktiiviset aineet poistuvat myös itsestään huuhtoutumalla sadeveden mukana jokiin ja sieltä mereen. Osa saastuneesta alueesta on jo riittävän puhdas, että evakuoidut asukkaat ovat voineet palata koteihinsa. Tammikuuhun 2015 mennessä oli palannut noin 45 000 ihmistä.[29] Osa evakuoiduista asukkaista ei kuitenkaan halunnut palata vanhaan kotiinsa, koska eivät luota hallinnon arvioihin paluun turvallisuudesta tai koska ovat jo ehtineet hankkia uuden työpaikan ja asunnon muualta.[21]

Voimayhtiö TEPCO on vastuussa onnettomuuden aiheuttamista vahingoista. Se maksaa evakuoiduille ihmisille korvausta 100 000 jeniä eli noin 800 euroa kuukaudessa.[29] Onnettomuuden aiheuttamien taloudellisten vahinkojen on arvioitu olevan yhteensä joitakin satoja miljardeja euroja.[32] Japanin valtio kansallisti eli otti omistukseensa TEPCOn estääkseen sen konkurssin.[33]

Kansainväliset reaktiot

Vaikutukset energiapolitiikkaan

Ydinsähkön tuotanto maailmassa 1995–2016, terawattituntia.

Ennen Fukushiman onnettomuutta Japani tuotti noin 30 prosenttia sähköstään 54 ydinreaktorilla. Onnettomuuden jälkeen kaikki Japanin reaktorit sammutettiin ja kahden rakenteilla olleen reaktorin rakennustyöt keskeytettiin. Sähkönkulutusta onnistuttiin vähentämään kesällä 2011 niin, että kulutus oli 12 prosenttia pienempi kuin edellisenä kesänä. Hiilen ja maakaasun käyttöä lisättiin. Ensimmäiset sammutetut reaktorit käynnistettiin uudelleen turvallisuusparannusten jälkeen vuonna 2015. Syyskuussa 2018 Japanissa oli käynnissä yhdeksän reaktoria ja 17 reaktorin uudelleenkäynnistyksen lupakäsittely oli menossa. Muutama reaktori on päätetty sulkea lopullisesti, koska turvallisuusparannusten tekeminen tulisi liian kalliiksi.[34]

Fukushiman onnettomuuden jälkeen Saksa päätti luopua ydinvoimasta kokonaan. 17 reaktorista kahdeksan suljettiin heti ja yksi vuonna 2015. Loput kahdeksan reaktoria tuottivat 13 prosenttia Saksan sähköstä vuonna 2016, ja ne aiotaan sulkea vuoteen 2022 mennessä. Suljettujen ydinvoimaloiden sähköntuotantoa on korvattu tuuli- ja aurinkovoimalla sekä hiilellä ja maakaasulla. Sen takia Saksan hiilidioksidipäästöt ovat kasvaneet.[35]

Suomessa Fukushiman onnettomuudella ei ole ollut suoria vaikutuksia energiapolitiikkaan. Eduskunta hyväksyi Hanhikiven reaktorin periaatepäätöksen täydennyksen joulukuussa 2014, vajaat neljä vuotta Fukushiman onnettomuuden jälkeen.[36] Ydinvoiman kannatus Suomessa laski hieman onnettomuuden jälkeen. TNS Gallupin kyselytutkimuksen mukaan kannattajien osuus laski 47:stä 42 prosenttiin ja vastustajien osuus nousi 21:stä 23 prosenttiin.[37]

Koko maailmassa ydinvoimalla tuotetun sähkön määrä laski 11 prosenttia vuosina 2010–2012. Sen jälkeen ydinvoiman käyttö on kääntynyt taas kasvuun, mutta vielä vuonna 2017 ydinsähköä tuotettiin viisi prosenttia vähemmän kuin ennen Fukushiman onnettomuutta.[38]

Ydinturvallisuuden parantaminen

Fukushiman onnettomuuden jälkeen ydinvoimayhtiöt ympäri maailmaa alkoivat selvittää, mitä onnettomuudesta voidaan oppia niiden omien reaktorien turvallisuuden parantamisen kannalta. EU-maissa hanke nimettiin stressitestiksi. Nimi lainattiin pankkien stressitesteistä, jotka oli tehty edellisenä vuonna. EU-maiden ydinvoimaloiden stressitesteissä todettiin, että turvallisuustaso on yleisesti korkea eikä yhtään reaktoria tarvinnut sulkea. Stressitesteissä löydettiin kuitenkin paljon mahdollisuuksia turvallisuuden parantamiseen. Eurooppalaisten ydinvoimaloiden suojausta tulvien ja muiden luonnonkatastrofien varalle parannettiin. Voimaloihin hankittiin siirrettäviä sähkögeneraattoreita ja vesipumppuja ja rakennettiin liitäntäpaikkoja, joiden kautta laitteet voidaan kytkeä ydinvoimalan sähkö- ja jäähdytysjärjestelmiin. Organisaatioiden toimintaa parannettiin muun muassa vahvistamalla ydinturvallisuusviranomaisten riippumattomuutta sekä parantamalla voimalaitosten työntekijöiden koulutusta vakavien onnettomuuksien varalle.[39][40]

Myös Suomen ydinvoimaloissa löydettiin Fukushiman onnettomuuden ja EU-stressitestien ansiosta keinoja, joilla turvallisuutta voitiin parantaa. Säteilyturvakeskus asetti uuden määräyksen, että voimalaitoksilla täytyy olla riittävästi tarvikkeita, esimerkiksi dieselgeneraattorien polttoainetta, että ne selviytyvät kolme vuorokautta, vaikka kaikki kuljetusyhteydet laitospaikalle olisivat poikki. Kuten muissakin EU-maissa, myös Suomessa ydinvoimaloihin hankittiin siirrettäviä sähkögeneraattoreita ja vesipumppuja. Loviisan ydinvoimalassa parannettiin turvallisuusjärjestelmien tulvasuojausta. Lisäksi Loviisaan asennettiin uudet jäähdytystornit, joiden kautta voidaan reaktoreiden jälkilämpöä poistaa, jos merivettä ei pystytä käyttämään jäähdytykseen esimerkiksi lähellä sattuneen öljytankkerionnettomuuden takia.[41] Olkiluodon ykkös- ja kakkosreaktoreille asennettiin uudet jäähdytysjärjestelmät, jotka toimivat myös sähkökatkoksen aikana. Käytetyn polttoaineen varastoaltaisiin sekä Olkiluodossa että Loviisassa asennettiin putkistot, joiden kautta niihin voidaan pumpata vettä siirrettävillä pumpuilla. Myös polttoainealtaiden lämpötilan ja vedenpinnan korkeuden mittausjärjestelmiä parannettiin, jotta sähkökatkoksen aikanakin tiedettäisiin, mikä tilanne altaissa on. Lisäksi kehitettiin organisaatioiden toimintaan liittyviä suunnitelmia siltä varalta, että useammassa reaktorissa on onnettomuustilanne yhtä aikaa, kuten tapahtui Fukushimassa.[42][43]

Japanissa perustettiin Fukushiman onnettomuuden jälkeen kokonaan uusi ydinturvallisuusviranomainen NRA ja vanha viranomainen NISA lakkautettiin. NRA laati uudet turvallisuusvaatimukset, jotka ydinvoimalaitosten täytyy täyttää, ennen kuin ne saa käynnistää uudestaan. Maanjäristys-, tsunami- ja tulvariskeihin täytyy nykyään Japanissa varautua aiempaa paljon paremmin. Kuten muissakin maissa, myös Japanissa ydinvoimaloihin on hankittu siirrettäviä sähkögeneraattoreita ja vesipumppuja. Vakavien onnettomuuksien hallintaan on asennettu uusia laitteita, kuten suodattimia suojarakennuksen paineenalennusjärjestelmiin. Japanin voimayhtiöiltä vaaditaan nykyään turvallisuuden jatkuvaa parantamista, sen sijaan että tyydyttäisiin siihen turvallisuustasoon, jota laitosta rakennettaessa pidettiin riittävänä. Todennäköisyyspohjaiset riskianalyysit on nykyään Japanissakin tehtävä kattaviksi, ja niihin täytyy sisällyttää myös ulkoisten tapahtumien, kuten tulvien, todennäköisyyksien arviointi.[44]

Ydinvoimaa vastustavien järjestöjen arvioita

Yhdysvaltalaisen ydinvoimaa vastustavan Union of Concerned Scientists -yhdistyksen David A. Lochbaum on todennut, että käytettyjen polttoainesauvojen säilytysaltaat reaktorirakennusten yläkerroksissa reaktorin suojarakennuksen ulkopuolella saattavat päästää ilmaan vielä enemmän haitallista säteilyä kuin mahdollinen ydinreaktorin sulaminen, jos altaat pääsevät kuivumaan ja polttoainesauvat syttymään tuleen.[45] Tämä mahdollisesti vakava voimaloiden turvallisuuspuute käytetyn polttoaineen säilytyksessä havaittiin viimeistään vuonna 1989, mutta kustannussyistä korjausta ei vaadittu ainakaan yhdysvaltalaisiin[46] voimaloihin.

Seuraukset yritysmaailmassa

Onnettomuuden seurauksena monien ydinvoimaa käyttävien energiayritysten osakekurssit laskivat, kun taas joidenkin uusiutuvaa energiaa käyttävien yritysten osakekurssit nousivat.[47]

Aikajana

Kellonajat ovat Japanin aikaa. Lähteenä IAEA:n raportti[2] lukuun ottamatta kohtia, joissa on muu viite.

  • 11. maaliskuuta 2011 klo 14.46: Maanjäristys, reaktorien pikasulku. Voimalaitoksen yhteys sähköverkkoon katkesi. Dieselgeneraattorit käynnistyivät.
  • 11. maaliskuuta 2011 klo 15.36: Tsunami. Dieselgeneraattorit pysähtyivät. Sähkökatkos. Ykkösreaktorin jäähdytys lakkasi toimimasta.
  • 11. maaliskuuta 2011 klo 20.50: Evakuoinnit aloitettiin.
  • 11. maaliskuuta 2011 klo 21.51: Ykkösyksikön reaktorirakennuksessa mitattiin korkeita säteilytasoja. Tämä osoitti, että reaktorin sydän on vaurioitunut.
  • 12. maaliskuuta 2011 klo 4.00: Ensimmäinen jäähdytysveden pumppaus ykkösreaktoriin paloautolla. (Pumppaus keskeytyi myöhemmin monta kertaa.)
  • 12. maaliskuuta 2011 klo 14–14.30: Ykkösyksikön suojarakennuksen paineenalennusventtiilit avattiin.
  • 12. maaliskuuta 2011 klo 15.36: Vetyräjähdys ykkösyksikön reaktorirakennuksessa.
  • 13. maaliskuuta 2011 klo 2.42: Kolmosreaktorin jäähdytys lakkasi toimimasta.
  • 13. maaliskuuta 2011 klo 8.41: Kolmosreaktorin suojarakennuksen paineenalennusventtiilit avattiin.
  • 13. maaliskuuta 2011 klo 9.25: Jäähdytysveden pumppaus kolmosreaktoriin paloautolla aloitettiin.
  • 14. maaliskuuta 2011 klo 11.01: Vetyräjähdys kolmosyksikön reaktorirakennuksessa.
  • 14. maaliskuuta 2011 klo 13: Huomattiin, että kakkosreaktorin vedenpinnan korkeus laskee, joten jäähdytys oli lakannut.
  • 14. maaliskuuta 2011 n. klo 20: Meriveden pumppaus kakkosreaktoriin paloautolla aloitettiin.
  • 15. maaliskuuta 2011 klo 6.14: Vetyräjähdys nelosyksikön reaktorirakennuksessa.
  • 15. maaliskuuta 2011 klo 9.00: Mitattiin korkein säteilyn annosnopeus (12 millisievertiä tunnissa) laitosalueen portilla.
  • 20. maaliskuuta 2011 klo 15.46: Sähköt saatiin palautetuksi ykkös- ja kakkosyksiköille.
  • 22. maaliskuuta 2011: Nelosyksikön käytetyn polttoaineen altaaseen saatiin pumpatuksi suurempi määrä jäähdytysvettä.
  • 26. maaliskuuta 2011: Sähköt saatiin palautetuksi kolmos- ja nelosyksiköille.
  • 4. huhtikuuta 2011: Ydinvoimayhtiö Tepco aikoi laskea 11 500 tonnia radioaktiivista vettä mereen kansainväliselle vesialueelle.[48] Radioaktiivisten jätteiden laskeminen meriin on kielletty kansainvälisellä sopimuksella. Japanin terveysministeriön mukaan Ibarakin maakunnassa kalassa havaittiin radioaktiivista jodia yli asetetun raja-arvon.[49] Useat tiedotusvälineet kertoivat meressä mitatun säteilymäärän ylittäneen sallitun rajan 7,5- tai 10-miljoonakertaisesti. Raporteissa oli kuitenkin satakertainen virhe.[50]

Lähteet

  1. a b c Emergency Responses and Health Consequences after the Fukushima Accident; Evacuation and Relocation. Clinical Oncology, 1.4.2016, nro 4, s. 237–244. doi:10.1016/j.clon.2016.01.002. ISSN 0936-6555. Artikkelin verkkoversio. en
  2. a b c d e f g h i j k l m n o p q r s The Fukushima Daiichi Accident. Report by the Director General (Luvut 2.1 ja 2.2.3) 2015. International Atomic Energy Agency. Viitattu 13.11.2017.
  3. Ydinlaitos- ja säteilytapahtumien kansainvälinen vakavuusasteikko INES 2015. Säteilyturvakeskus. Viitattu 17.10.2018.
  4. a b Fukushiman ydinvoimalaitoksen onnettomuus 20.3.2017. Säteilyturvakeskus. Viitattu 16.11.2017.
  5. a b Global report on Fukushima nuclear accident details health risks 28.2.2013. World Health Organization. Viitattu 17.10.2018.
  6. List of Reactors (html) International Nuclear Safety Center Database. 12.3.2011. Viitattu 13.3.2011. (englanniksi)
  7. a b Zeller, Tom Jr.: Experts Had Long Criticized Potential Weakness in Design of Stricken Reactor 15.3.2011. New York Times. Viitattu 21.7.2018.
  8. Muñoz, Ramón: Fukushima y Garoña, nucleares hermanas El País. 13.3.2011. Viitattu 15.11.2018. (espanjaksi)
  9. a b Fukushima Accident - World Nuclear Association www.world-nuclear.org. Viitattu 13.11.2017.
  10. Muon data confirms fuel melt at Fukushima Daiichi 1 World Nuclear News. 23.3.2015. Viitattu 13.11.2017.
  11. Fukushima nuclear accident analysis report (Luku 11.2) 20.6.2012. Tokyo Electric Power Company. Viitattu 15.11.2017.
  12. Locating fuel debris inside the Unit 2 reactor using a muon measurement technology at Fukushima Daiichi nuclear power station 28.6.2016. Tokyo Electric Power Company. Viitattu 15.11.2017.
  13. Unit 2 primary containment vessel investigation at Fukushima Daiichi nuclear power station 15.2.2017. Tokyo Electric Power Company. Viitattu 15.11.2017.
  14. Fukushima Daiichi nuclear power station Unit 2 primary containment vessel internal investigation results 1.2.2018. Tokyo Electric Power Company. Viitattu 5.2.2018.
  15. Locating fuel debris inside the Unit 3 reactor using a muon measurement technology at Fukushima Daiichi nuclear power station 28.9.2017. Tokyo Electric Power Company. Viitattu 16.11.2017.
  16. a b c d Status report on spent fuel pools under loss-of-cooling and loss-of-coolant accident conditions (Luku 4) 4.5.2015. OECD Nuclear Energy Agency. Viitattu 16.11.2017.
  17. Helikoptereista tonneittain vettä ydinvoimalaan - aika käy vähiin Yle Uutiset. Viitattu 16.11.2017.
  18. a b Fukushiman ydinvoimalaitoksen sotkujen siivoaminen etenee, mutta kestää kauan 9.3.2017. Säteilyturvakeskus. Viitattu 16.11.2017.
  19. a b Fukushiman Daiichin ydinonnettomuus oli psykologinen, sosiaalinen ja taloudellinen katastrofi Säteilyuutiset. 2016. Säteilyturvakeskus. Viitattu 22.10.2018.
  20. Fukushima nuclear disaster: did the evacuation raise the death toll? Financial Times. 11.3.2018. Viitattu 28.10.2018. (englanniksi)
  21. a b 6 vuotta aavekaupunkina – Fukushiman onnettomuuden jäljiltä pikaevakuoitu Namie valmistautuu asukkaiden paluuseen, mutta… Tekniikka & Talous. 28.3.2017. Viitattu 27.10.2018.
  22. No Immediate Health Risks from Fukushima Nuclear Accident Says UN Expert Science Panel United Nations Information Service. 31.5.2013. Wien.
  23. Radiation fears after Japan blast BBC News. 15.3.2011. Viitattu 15.3.2011. (englanniksi)
  24. Suomella ja Ruotsilla eri suositukset joditableteista Yle Uutiset. 19.3.2011. Viitattu 19.3.2011.
  25. Fukushiman päästöt saavuttivat Yhdysvallat Yle Uutiset. 18.3.2011. Viitattu 19.3.2011.
  26. Fukushiman radioaktiiviset aineet levisivät Suomeen Taloussanomat. 23.3.2011. Viitattu 23.3.2011.
  27. a b c d e f g h i The Fukushima Daiichi Accident, technical volume 2/5 2015. International Atomic Energy Agency. Viitattu 21.10.2018.
  28. a b Summary of Decommissioning and Contaminated Water Management 6.9.2018. TEPCO. Viitattu 27.10.2018.
  29. a b c d The Fukushima Daiichi Accident. Report by the Director General (Luku 5) 2015. International Atomic Energy Agency. Viitattu 27.10.2018.
  30. Fortum sai suurtilauksen Fukushiman puhdistajalta Tekniikka & Talous. 22.9.2015. Viitattu 27.10.2018.
  31. Beiser, Vince: Fukushima’s Other Big Problem: A Million Tons of Radioactive Water Wired. 27.4.2018. Viitattu 17.11.2018. (englanniksi)
  32. Hornyak, Tim: Clearing the Radioactive Rubble Heap That Was Fukushima Daiichi, 7 Years On Scientific American. 9.3.2018. Viitattu 27.10.2018. (englanniksi)
  33. Japani kansallistaa Tepcon väliaikaisesti Yle Uutiset. 9.5.2012. Viitattu 27.10.2018.
  34. Nuclear Power in Japan 2018. World Nuclear Association. Viitattu 28.10.2018.
  35. Ydinvoima roskakoriin – onko Saksan energiapolitiikka käännös harhaan? Vihreä Lanka. 8.12.2017. Viitattu 28.10.2018.
  36. Fennovoima sai periaateluvan Pyhäjoen ydinvoimalalle Yle Uutiset. 5.12.2014. Viitattu 28.10.2018.
  37. Mielipiteet ydinvoimasta 2016. Energiateollisuus ry. Viitattu 28.10.2018.
  38. Trend in Electricity Supplied Power Reactor Information System. 27.10.2018. International Atomic Energy Agency. Viitattu 28.10.2018. (englanniksi)
  39. Stressitestit: Lähes kaikkiin EU-alueen ydinvoimaloihin suositellaan parannuksia Yle Uutiset. 4.10.2012. Viitattu 3.11.2018.
  40. Flexible systems and approaches boost safety after Fukushima World Nuclear News. 29.2.2016. Viitattu 3.11.2018.
  41. Jäähdytystornit valmistuivat Loviisan ydinvoimalaitokselle Yle Uutiset. 5.5.2015. Viitattu 3.11.2018.
  42. Lundén, Kimmo: Fukushima laukaisi kalliit parannukset Talouselämä. 9.3.2012. Viitattu 3.11.2018.
  43. Finnish report on nuclear safety 2016. Säteilyturvakeskus. Viitattu 3.11.2018.
  44. Fuketa, Toyoshi: Lessons learned from the Fukushima Dai-ichi accident and responses in regulatory requirements The 23rd International Conference on Nuclear Engineering (ICONE-23). 2015. Nuclear Regulation Authority, Japan. Viitattu 3.11.2018.
  45. Broad, William J. & Hiroko Tabuchi: In Stricken Fuel-Cooling Pools, a Danger for the Longer Term The New York Times. 14.3.2011. Viitattu 16.3.2011. (englanniksi)
  46. NRC: Beyond Design Basis Accidents in Spent Fuel Pools nrc.gov. 24.4.1989. Viitattu 17.3.2011.
  47. Beetz, Becky: Nuclear power comes under attack; solar stocks increase pv magazine. 14.3.2011. Viitattu 16.3.2011. (englanniksi)
  48. Tepco päästää tonneittain saastunutta vettä mereen yle.fi. 4.4.2011. Viitattu 15.11.2018.
  49. Japani asettaa kalalle säteilyrajan yle.fi. 5.4.2011. Viitattu 15.11.2018.
  50. Japan nuclear plant data error was 'unacceptable' BBC News. 28.3.2011. Viitattu 15.11.2018. (englanniksi)

Aiheesta muualla

Commons
Commons
Wikimedia Commonsissa on kuvia tai muita tiedostoja aiheesta Fukushiman ydinvoimalaonnettomuus.