Rapakivi

Wikipedia
Loikkaa: valikkoon, hakuun
Moroa

Rapakivet ovat anorogeenisia laatan sisäisiä A-tyypin graniitteja, joille on tunnusomaista rapakivitekstuuri suurimmissa batoliiteissa. Tiukan määritelmän mukaan rapakivitekstuuriin kuuluu (1) alkalimaasälpäfenokrysti, jota voi reunustaa (2) plagioklaasikehä sekä (3) kahden generaation alkalimaasälpää ja kvartsia. Kaikissa rapakivissä ei välttämättä ole hyvin kehittynyttä rapakivitekstuuria, jolloin 1–5 cm läpimittaisten pyöreähköiden alkalimaasälpäfenokrystien ympäriltä puuttuvat plagioklaasikehät. Rapakivistä on olemassa myös muita tekstuureja, jotka ovat porfyyrinen ja tasarakeinen.[1] Rapautuminen geokemiallisena ilmiönä on tunnusomaista rapakiville. Ne rapautuvat herkästi soraksi ja pieneksi kiviksi, jota kutsutaan moroksi.[2]

Rapakiviä tavataan kaikilla mantereilla ja ne ovat iältään 2,8–0,05 Ga[3], mutta suurin osa niistä syntyi paleo- ja mesoproterotsooisella maailmankausilla 1,8–1,0 Ga sitten. Suomen rapakivet ovat iältään 1650–1540 Ma. Suomea pidetään rapakivitutkimuksen ydinalueena. Suomessa on neljä suurta rapakivibatoliittia; Viipurin, Laitilan, Vehmaan ja Ahvenanmaan batoliitit sekä useita pienempiä stokkeja; Suomenniemi, Ahvenisto, Onas, Bodom, Obbnäs, Sipoo, Reposaari, Eurajoki, Kokemäki, Fjälskär ja Kökarsfjärden. Näiden kaikkien graniittien ikä on 1,64–1,54 Ga välillä.[4]

Professori Jakob Johannes Sederholm julkaisi kattavan tutkimuksen rapakivistä vuonna 1891. Hän oli ensimmäinen tutkija, joka esitti rapakivitekstuurin. Urban Hjärnen vuoden 1694 julkaisussa sana rapakivi tulee esille ensimmäistä kertaa, ja se on saunan lisäksi harvoja suomalaisia sanoja, jotka ovat säilyneet sellaisenaan muissa kielissä.[5]

Mineralogia[muokkaa | muokkaa wikitekstiä]

Kiillotettu viborgiitti, jossa on 1–5 cm halkaisijaltaan olevia alkalimaasälpäfenokrysteja, joista osaa niistä reunustaa 2–3 mm paksuinen plagioklaasikehä.

Rapakiven päämineraalit ovat paljousjärjestyksessä alkalimaasälpä, plagioklaasi, kvartsi, sarvivälke ja biotiitti.[6]

Alkalimaasälpä muodostaa noin 50 tilavuusprosenttia kivestä. Se on runsain päämineraali ja väriltänsä se on punainen. Se esiintyy 1–5 cm:n kokoisina rakeina ja se on muodoltansa pyöreähkö ovoidi. [7]

Plagioklaasi muodostaa noin 20 tilavuusprosenttia kivestä. Se esiintyy harmaana 2–3 mm:n paksuisena kehänä alkalimaasälpien ympärillä ja perusmassassa. Sen koostumus on oligoklaasin ja albiitin välillä.[8]

Kvartsi, sarvivälke ja biotiitti muodostavat yhdessä noin 15 tilavuusprosenttia kivestä. Nämä mineraalit esiintyvät 1–3 mm:n kokoisina rakeina. Sarvivälke ja biotiitti ovat tummia mafisia mineraaleja. Kvartsin muoto on pisaran mallinen.[9]

Fluoriitti on tärkeä aksessorinen mineraali. Muita aksessorisia mineraaleja ovat topaasi, zirkoni, allaniitti, magnetiitti, apatiitti ja ilmeniitti.[10]

Geokemia[muokkaa | muokkaa wikitekstiä]

Rapakivet ovat meta- ja peralumiinisia laatan sisäisiä A-tyypin graniitteja. Rapakiviin ovat rikastuneet K, Rb, Pb, Nb, Ta, Zr, Hf, Zn, Ga, Sn, Th, U, F ja REE alkuaineista. Rapakivet ovat köyhtyneet Ca, Mg, Al, P ja Sr alkuaineista. Näiden lisäksi rapakivissä on korkeat Fe/Mg, K/Na ja Rb/Sr -suhteet. SiO2 -pitoisuus on 70,5 wt. % kivestä, mikä tekee rapakivistä happamia graniitteja. Kondriittiin normalisoidut REE-alkuainepitoisuudet antavat rapakivigraniiteille vahvan Eu minimin.[11]

Rapakivissä esiintyy enemmän fluoria (0,04–1,53 wt. %) kuin muissa kivissä, joiden F-pitoisuus on keskimäärin (0,35 wt. %). Poikkeuksellisen korkeat F-pitoisuudet rapakivissä ilmenevät batoliittien läheisyydessä pohjavesissä. Juomavedessä on korkeammat F-pitoisuudet (1–2 mg/l) kuin muualla Suomessa keskimäärin (0,1 mg/l). Rapakivibatoliittien läheisyydessä asuvien ihmisten hampaissa on enemmän hammaskiillettä. Siksi rapakivialueilla asuvien ihmisten hampaat ovat paremmassa kunnossa kuin keskimäärin muualla Suomessa asuvien ihmisten. F on peräisin topaasi, fluoriitti ja fluoriapatiitti mineraaleista.[12][13]

Rapakivialueilla uraania esiintyy keskimäärin enemmän (1,3–24 ppm) kuin muualla Suomen kallioperässä, jossa U:n keskiarvo on 6,8 ppm.[14] Terveydelle haitallista radonia (Rn) syntyy 238U:n radioaktiivisessa hajoamisesta kallioperässä, josta se liikkuu jalokaasuna kohti maaperää. Maaperästä radonkaasu kulkeutuu asuntojen pohjarakenteiden kautta sisätilojen huoneilmaan. Etelä-Suomen rapakivialueilla ylittyy 400 Bq/m3 terveysasetusarvo huoneilmassa. Suomen rakennusten huoneilman radonpitoisuudet ovat korkeimmat maailmassa.[15][16]

Taloudellinen merkitys[muokkaa | muokkaa wikitekstiä]

Graniittitalo, johon on käytetty Palin Granit Oy:n Balmoral Red rapakiveä.[17]

Rapakiveä arvostetaan rakennuskivenä monipuolisten käyttömahdollisuuksien ja monet laatukriteerit täyttävän kestävyyden, ekologisuuden sekä kierrätettävyyden ansiosta. Rapakiveä käytetään sen kauniin värin ja tekstuurin vuoksi myös monumenteissa, tulisijoissa, ulkoportaikoissa, hautakivissä ja kivimurskeena. Suomalaiset rapakivet ovat tunnettuja rakennuskiviä maailmalla korkean laadun ansiosta. Etelä-Suomessa sijaitsee noin 20 rapakivigraniittilouhosta, joista Viipurin ja Vehmaan batoliitit ovat tärkeimmät alueet, joista louhitaan tasalaatuista rapakiveä vientiin monella eri kauppanimellä. Tunnetuin kauppanimi rapakiville on porfyyrinen hieno- ja karkearakeinen Balmoral Red. Muita tunnettuja kauppanimiä ovat Carmen Red, Eagle Red, Karelia Red, Baltic Brown, Monola Brown ja Baltic Green. Näiden lisäksi rapakivikomplekseihin liittyviä anortosiitteja myydään kauppanimellä spketroliitti.[18][19]

Suomi on maailman merkittävin rapakivien tuottajamaa, mikä tarkoitti 100 miljoonan euron liikevaihtoa vuonna 2004. Rapakiveä louhitaan Vehmaan ja Viipurin batoliiteista, mikä tarkoitti 81 % osuttaa kaikesta louhitusta luonnonkivimateriaalista Suomessa vuonna  2011.[20] Rapakiviin liittyy myös malminmuodostusta. Proterotsooisiin rapakiviplutoneihin liittyy kaksi tärkeää malmityyppiä, jotka ovat greisen-, juoni- ja karsi -tyypin Sn (-W-Be-Zn-Pb) ja Fe-oksidi-Cu (-U-Au-Ag). [21]

Lähteet[muokkaa | muokkaa wikitekstiä]

  • Dempster, T. J., Jenkin, G. R. T., ja Rogers, G. 1994. The origin of rapakivi texture. Journal of Petrology, 35, 963-981.
  • Haapala, I. 1995. Metallogeny of the rapakivi granites. Mineralogy and Petrology, 54, 149-160.
  • Kananoja, T., Pokki, J., Ahtola, T., Hyvärinen, J., Kallio, J., Kinnunen, K., Luodes, H.,Sarapää, O., Tuusjärvi, M., Törmänen, T. ja Virtanen, K. 2013. Geologisten luonnonvarojen hyödyntäminen Suomessa vuonna 2011. Summary: Geological resources in Finland, production data and annual report 2011. Geological Survey of Finland, Report of Investigation 203, 1-38.
  • Lahermo, P., Sandström, H., ja Malisa, E. 1991. The occurrence and geochemistry of fluorides in natural waters in Finland and East Africa with reference to their geomedical implications. Journal of Geochemical Exploration, 41, 65-79.
  • Larin, A. M. 2009. Rapakivi granites in the geological history of the earth. Part 1, magmatic associations with rapakivi granites: age, geochemistry, and tectonic setting. Stratigraphy and Geological Correlation, 17, 235-258.
  • Müller, A. 2007. Rapakivi granites. Geology Today, 23, 114-120.
  • Palin Granit Oy 2014.<http://www.palingranit.fi/kivimallit/referenssit/>. Luettu 06.04.2014.
  • Rämö, O. T., ja Haapala, I. 1995. One hundred years of rapakivi granite. Mineralogy and Petrology, 52, 129-185.
  • Rämö, O.T., ja Haapala, I. 2005. Rapakivi granites. In: Lehtinen, M., Nurmi, RA., Rämö, O.T. (Eds.), Precambrian Geology of Finland - Key to the Evolution of the Fennoscandian Shield. Elsevier B.V., Amsterdam, 533-562.
  • Rämö, T., Haapala, I. ja Laitakari, I. 1998. Rapakivigraniitit – peruskallio repeää ja sen juuret sulavat. In: Lehtinen, M., Nurmi, RA., Rämö, O.T. (Toim.), Suomen kallioperä – 3000 vuosimiljoonaa. Suomen geologinen seura. Gummerus kirjapaino, Jyväskylä. 257-283.
  • Selonen, O., Luodes, H., ja Ehlers, C. 2000. Exploration for dimensional stone—implications and examples from the Precambrian of southern Finland. Engineering Geology, 56, 275-291.
  • Valmari, T., Arvela, H., ja Reisbacka, H. 2012. Radon in Finnish apartment buildings. Radiation Protection Dosimetry, 152, 146-149.
  • Weltner, A., Mäkeläinen, I., ja Arvela, H. 2002. Radon mapping strategy in Finland. In: International Congress Series 1225, 63-69.

Viitteet[muokkaa | muokkaa wikitekstiä]

  1. Dempster et al. 1994
  2. Rämö et al. 1998
  3. Larin 2009
  4. Rämö ja Haapala 1995
  5. Rämö ja Haapala 2005
  6. Dempster et al. 1994
  7. Dempster et al. 1994
  8. Dempster et al. 1994
  9. Dempster et al. 1994
  10. Dempster et al. 1994
  11. Rämö ja Haapala 2005
  12. Lahermo et al. 1996
  13. Rämö ja Haapala 2005
  14. Rämö ja Haapala 1995
  15. Valmari et al. 2012
  16. Weltner et al. 2002
  17. Palin Granit Oy 2014
  18. Selonen et al. 2000
  19. Kananoja et al. 2013
  20. Müller 2007
  21. Haapala 1995