Kausaliteetti

Wikipedia
Loikkaa: valikkoon, hakuun

Kausaliteetti (lat. causalitas < causa 'syy') on syy–seuraussuhde eli kahden tapahtuman suhde, jossa toinen aiheuttaa toisen. Toinen tapahtuma on tällöin syy ja toinen seuraus. Syy esiintyy ennen seurausta.

Kausaliteetin käsitettä on pohdittu paljon tunnettujen filosofien toimesta Aristoteleesta lähtien. Aristoteles määrittää teoksessaan Metafysiikka neljä syytä, joihin kaikki eri syyt voitaisiin luokitella: materiaalinen, formaalinen, aikaansaava ja päämääräsyy. Näistä tieteellisessä keskustelussa kiinnostavin on aikaansaava syy, eli se syy mistä muutos saa alkunsa.

David Humen filosofian mukaan kausaatio on vain suhde havaittujen tapahtumien välillä, mutta empiirisesti ei voida varmentaa, että toinen tapahtuma (syy) aiheuttaisi toisen (seuraus). Sen sijaan voidaan tutkia seuraako havaittu tapahtuma (seuraus) säännöllisesti toista havaittua tapahtumaa (syy). Humen analyysi tunnisti kolme kriteeriä sille onko kyseessä syy-seuraussuhde. Spatiaallinen/ajallinen jatkuvuus, ajallinen järjestys ja yhteyden vakioisuus. Humen empiiristä ajattelutapaa käytti lähtökohtanaan Patrick Suppes, joka käsitteli todennäköisyysteoriaa kausaalisuudelle. Suppesin teorian mukaan tapahtuma on syy toiselle tapahtumalle, jos ensimmäisen tapahtuman esiintymistä seuraa suurella todennäköisyydellä toisen tapahtuman esiintyminen, eikä ole kolmatta tapahtumaa joka selittää kahden ensimmäisen tapahtuman suhteen. [1]

Albert Einsteinin suppeassa suhteellisuusteoriassa kausaliteetin invarianssi on eräs peruslähtökohdista. Sen mukaan kahden tapahtuman syy–seuraussuhde on sama kaikissa koordinaatistoissa.

Korrelaatiosta ei seuraa kausaliteetti[muokkaa | muokkaa wikitekstiä]

Korrelaatio kertoo määritelmänsä mukaan kahden muuttujan välisestä riippuvuudesta. Vaikka kahden muuttujan arvot ovat yhteydessä toisiinsa, niin pelkän havaitun assosiaation perusteella ei voida tehdä päätelmiä kausaalisuudesta. Havaitun assosiaation taustalla saattaa olla havaitsematon muuttuja, sekoittava tekijä, joka vaikuttaa molempiin muuttujiin. Esimerkkinä voidaan käyttää jäätelön myynnin ja hukkumiskuolemien välistä assosiaatiota, jossa sekoittavana tekijänä on ilman lämpötila. Jäätelön myynnin ja hukkumiskuolemien määrän välillä saattaa olla voimakastakin korrelaatiota, mutta kausaalipäätelmät olisivat virheellisiä, ainakin ilman huolellista muiden tekijöiden huomioimista.

Assosiaatio vai kausaalisuhde[muokkaa | muokkaa wikitekstiä]

Korrelaatiosta ei seuraa välttämättä kausaalisuutta, mutta kuitenkin tutkimusasetelman tarkoituksena on usein tehdä päätelmiä nimenomaan tapahtuminen kausaalisuhteista. Usein kun riittävää ennakkotietoa ei ole, ollaan riippuvaisia havainnoista ja havaituista assosiaatioista tapahtumien välillä. Sir Austin Bradford Hill on esittänyt seuraavat kriteerit, joiden avulla voidaan arvioida voiko havaittu assosiaatio johtua kausaalisuudesta. Annetut kriteerit eivät ole välttämättömiä ehtoja kausaalisuudelle vaan niiden tarkoitus on auttaa hahmottamaan missä tilanteissa assosiaatio voisi johtua kausaalisuudesta.[2]

  1. Assosiaation voimakkuus - mitä voimakkaampi korrelaatio, sitä luultavimmin taustalla on kausaaliyhteys
  2. Konsistenssi - samanlaisia tuloksia muissa riippumattomissa tutkimuksissa
  3. Spesifisyys
  4. Ajallinen suhde - syyn tulee edeltää seurausta
  5. Annos-vaste - altistusta kasvattamalla, vaste muuttuu
  6. Uskottavuus - kausaalisuus on biologisesti uskottava eli sen voi selittää biologisella periaatteella
  7. Johdonmukaisuus - epäilty kausaalisuhde ei ole ristiriidassa tunnetun tietämyksen kanssa
  8. Kokeellinen näyttö - joissakin tapauksissa on mahdollista saada kokeellista näyttöä kausaalisuuden puolesta
  9. Analogia - samantapaisia kausaaliyhteyksiä tunnetaan ennalta

Rubinin kausaalimalli[muokkaa | muokkaa wikitekstiä]

Oletetaan että populaatio koostuu yksilöistä u. Yksilöille suoritettavia mahdollisia käsittelyjä S on kaksi: kontrolliryhmä  (S=c) ja käsittelyryhmä  (S=t) . Kokeellisessa tutkimuksessa tutkija voi kontrolloida kumpaan ryhmään kukin yksilö joutuu, havainnoivassa tutkimuksessa ryhmä määräytyy muista, ulkopuolisista tekijöistä. Rubinin kausaalimallissa oleellista on, että jokainen yksilö voidaan altistaa mille tahansa käsittelylle. Tai siis arvo S(u) olisi voinut olla erilainen jokaiselle yksilölle u.[1]

Vastemuuttujan tehtävä on mitata valitun käsittelyn vaikutusta. Potentiaalisia vasteita on kaksi, Y_t ja Y_c, riippuen käsittelystä S. Merkitään yksilön u potentiaalisia vasteita Y_t(u) ja Y_c(u), missä Y_t(u) on vaste, joka olisi havaittu, jos yksilö u olisi altistettu käsittelylle t. Vastaavasti Y_c(u) on arvo, joka olisi havaittu samalta yksilöltä u, jos se olisi altistunut käsittelylle c. Yksilöltä havaitaan kuitenkin vain toinen potentiaalisista vasteista, havaitsematonta vastetta kutsutaan kontrafaktuaaliksi.[1]

Käsittelyn t kausaalivaikutus suhteessa kontrolliin c yksilölle u on erotus Y_t(u) - Y_c(u).[1]

Kausaalipäättelyn perusongelma[muokkaa | muokkaa wikitekstiä]

Erotusta Y_t(u) - Y_c(u) ei voida sellaisenaan käyttää kausaalivaikutuksen laskemiseksi, koska molempia arvoista  Y_t(u) ja Y_c(u) ei voida havaita. Samalta yksilöltä on mahdoton mitata molempia vasteita. Ongelmalle voidaan esittää kaksi yleistä ratkaisua.

Tieteellinen ratkaisu on olettaa ajallinen stabiilius, jolloin vaste ei riipu käsittelyn ajankohdasta tai aiemmista käsittelyistä. Tällöin voidaan mitata sekä  Y_t(u) että Y_c(u) yksilöltä u. Toinen vaihtoehto on olettaa yksilöiden homogeenisuus, jolloin kausaalivaikutus voidaan laskea erotuksena  Y_t(u_1) - Y_c(u_2) kahden eri yksilön vasteita käyttäen.

Tilastotieteellisessä ratkaisussa tarkastellaan keskimääräistä kausaalivaikutusta  T = E(Y_t - Y_c) = E(Y_t) - E(Y_c) . Kuitenkaan yleisesti yhtäsuuruus  E(Y_t) = E(Y_t|S=t) ei päde. Tai siis koko populaatiosta laskettu keskiarvo poikkeaa keskiarvosta, joka lasketaan käsittelyyn t joutuneiden yksilöiden yli. Yhtäsuuruus pätee, jos yksilöt on jaettu satunnaisesti käsittelyryhmiin, mikä voidaan varmistaa ainakin kokeellisessa tutkimuksessa. Tällöin prima facie kausaalivaikutuksella  T_{PF} = E(Y_t|S=t) - E(Y_c|S=c) voidaan estimoida kiinnostavaa kausaalivaikutusta T.

Pearlin kausaalimalli[muokkaa | muokkaa wikitekstiä]

Tilastotietelijät ovat perinteisesti varovaisia tekemään päätelmiä kausaalisuudesta. Kuitenkin esimerkiksi terveys-, sosiaali- ja käyttäytymistieteissä ollaan kiinnostunteita nimenomaan kausaalisuhteista, eikä pelkästään havaitusta assosiaatiosta. Kausaalipäätemiä varten tarvitaan aina ulkopuolista tietämystä, eikä niitä voi tehdä pelkästään kerätyn datan avulla, mikä osaltaan selittää varovaisuutta tehdä päätelmiä kausaalisuudesta. Hyvin toteutetussa satunnaistetussa tutkimusasetelmassa kausaliteetista tehtävät päätelmät ovat valideja. Aina tälläista tutkimusasetelmaa ei voida toteuttaa. Esimerkiksi tupakoinnin ja keuhkosyövän yhteyttä ei ole eettisistä syistä mahdollista tutkia näin. Judea Pearlin esittelemän kausaalimallin puitteissa voidaan kausaalilaskennan sääntöjä käyttäen poistaa tarve kokeelliselle interventiolle. Pearlin määrittelemässä kausaalilaskennassa keskeisessä osassa on do()-operaattori. Merkintä do(X) tarkoittaa, että muuttujan X arvo on kiinnitetty eli siihen on kohdistettu toiminto, jota kutsutaan myös interventioksi.[3]

Pearlin kausaalimallissa muuttujat ovat samanarvoisia sen suhteen mikä voi olla syy. Perinteisesti syyksi on kelpuutettu vain muuttujat, joiden arvoja voidaan kontrolloida. Rubinin kausaalimallin yhteydessä on Hollandin artikkelissa on käytetty mottoa "No causation without manipulation" selventämään tätä filosofiaa.[1]

Pearlin kausaalimalllin kokoaminen lähtee kausaalirakenteen tarkasta määrittelystä graafiteorian avulla. Kausaalirakenne kertoo yksinkertaisesti muuttujien välisistä kausaalivaikutuksista. Graafissa jokainen solmu vastaa muuttujaa ja solmujen välille piirrettävät nuolet, särmät, kertovat kausaaliyhteyden suunnan. Rakenteelle on vaatimuksena mm. se että kausaalirakenteen on muodostettava suunnattu silmukaton graafi. Yksinkertaisestti tämä tarkoittaa että kausaalivaikutuksilla on oltava suunta (muuttuja X vaikuttaa muuttujaan Y) ja lisäksi rakenteessa ei saa olla silmukoita. Esimerkiksi graafi, jossa X vaikuttaa Y:n arvoon, Y vaikuttaa Z:n arvoon ja Z edelleen vaikuttaa X:n arvoon, ei ole tässä mielessä hyväksyttävä kausaalirakenne.[3]

Granger-kausaalisuus[muokkaa | muokkaa wikitekstiä]

Granger-kausaalisuuden käsitettä käytetään aikasarjojen ennustamisessa. Jos signaali X1 on signaalin X2 Granger-syy, niin X1:n aiempien arvojen tulisi sisältää lisäinformaatiota X2:n arvojen ennustamiseen. Toisin sanoen X1 ja X2 yhdessä antamaa informaatiota käyttäen saadaan parempia ennusteita X2:lle verrattuna ennusteisiin, jotka olisi laskettu vain aiempia X2-arvoja käyttäen.

Granger-kausaalisuus kehitettiin 1960-luvulla ja se on siitä asti ollut laajalti käytössä erityisesti taloustieteissä. Viime vuosina sovellukset neurotieteissä ovat myös yleistyneet. [4]

Katso myös[muokkaa | muokkaa wikitekstiä]

Lähteet[muokkaa | muokkaa wikitekstiä]

  1. a b c d e Holland, Paul W.: Statistics and Causal Inference Journal of American Statistical Association, December 1986, Vol 81, No 396, Theory and Methods. (englanniksi)
  2. Hill, Austin Bradford: The Environment and Disease: Association or Causation? Proceedings of the Royal Society of Medicine, 58 (1965), 295-300. (englanniksi)
  3. a b Pearl, Judea: Causal inference in statistics: An overview Statistics Surveys, Vol 3 (2009) s. 96-146. (englanniksi)
  4. Seth, Anil: Granger causality Scholarpedia, Vol 2, no 7, p. 1667 (2007). (englanniksi)

Aiheesta muualla[muokkaa | muokkaa wikitekstiä]

  • Dowe, Phil: Causal Processes The Stanford Encyclopedia of Philosophy. The Metaphysics Research Lab. Stanford University. (englanniksi)
  • Menzies, Peter: Counterfactual Theories of Causation The Stanford Encyclopedia of Philosophy. The Metaphysics Research Lab. Stanford University. (englanniksi)
  • Schaffer, Jonathan: The Metaphysics of Causation The Stanford Encyclopedia of Philosophy. The Metaphysics Research Lab. Stanford University. (englanniksi)