Tähteä ympäröivä elämänvyöhyke

Wikipediasta
Siirry navigaatioon Siirry hakuun
Tieteistaiteilijan näkemys kuvitteellista, tuntematonta tähteä kiertävästä jättiläisplaneetan elinkelpoisesta kuusta, joka on meidän tuntemiamme kuita suurempi. Kuussa on nestemäistä vettä ja sopivan viileää, joten se soveltuu elämälle. Kuun keskusplaneetta näkyy kuun taivaalla valtavan suurena. Jättiläisplaneetan suuren kuun elinkelpoisuutta saattaa häiritä jättiläisen voimakkaaseen magneettikenttään vangiksi jäänyt protonisäteily.

Tähteä ympäröivä elämänvyöhyke (elinkelpoinen vyöhyke, elämänvyöhyke, elokehä, ekosfääri) on Aurinkoa tai muuta tähteä ympäröivä vyöhyke, jolla lämpötila on sopiva nestemäisen veden esiintymiseen. Jos tällä vyöhykkeellä on planeetta, sillä voi olla elämää. Maa on ainoa varmasti tunnettu elämänvyöhykkeellä kiertävä planeetta, vaikka monien eksoplaneettojen väitetäänkin kiertävän[1] elämänvyöhykkeellä. Elinkelpoisen vyöhykkeen sisä- ja ulkorajoja esimerkiksi Auringolle ei tunneta.[2]

Maan tyyppistä elämää ylläpitävää planeettaa kutsutaan elinkelpoiseksi planeetaksi, joskus myös kultakutriplaneetaksi (engl. goldilocks planet). Luultavasti elinkelpoisen vyöhykkeen sijainti riippuu keskustähden lisäksi myös planeetan pyörimisnopeudesta, merten ja mannerten osuudesta ja jakaumasta, sen kaasukehän arvoista jne. Yleensä kultakutriplaneetan määritelmään sisältyy myös, että sen massan on oltava melko lähellä Maan massaa. Aurinkokunnan ulkopuolelta löydetyistä eksoplaneetoista kultakutriplaneettana pidetään nykyään lähinnä planeettaa Gliese 581 g.[3]

Tutkijoiden mielestä yksinäiset Aurinkoa muistuttavat G-tyypin pääsarjan tähdet sopivat parhaiten elämälle. Myös kaksoistähdillä voi olla tietyin edellytyksin elämälle sopivia planeettoja.

Elinkelpoisen vyöhykkeen arviointi[muokkaa | muokkaa wikitekstiä]

Mitä kirkkaampi tähti on, sitä kauempana siitä on vihreällä merkitty elämänvyöyhke. Punaisella alueella lähellä tähteä on liian kuumaa, ja elämänvyöhykkeen ulkopuolella on liian kylmää.
Jos tähti on neljä kertaa Aurinkoa kirkkaampi, sen elämänvyöhyke on kaksi kertaa kauempana siitä kuin Maa Auringosta.

Optimistinen ja pessimistinen arvio[muokkaa | muokkaa wikitekstiä]

Elämä Maan pinnalla on mahdollista, koska se kiertää lämmittävää Aurinkoa, joka lämmittää Maata teholla 1 370 W/m2. Maan keskimääräinen lämpötila laskettuna eri paikkojen ja päivien vuosikeskiarvoksi on noin 14,4 °C.

Meidän tuntemamme mutkikkaisiin hiiliyhdisteisiin perustuva elämä vaatii nestemäistä vettä. Niinpä elinkelpoisen vyöhykkeen laaja määritelmä on se, että planeetalla esiintyy nestemäistä vettä. Mutta lämpötila ei saa myöskään olla liian lähellä kiehumispistettä, koska silloin useimmat eliöt hajoavat. Jotkut mikroskooppisen pienet alkeistumalliset ekstremofiilit kestävät silti yli 100 °C:n lämpötiloja, ja jotkut jäkälät jonkin verran pakkasta.

Melkoisen optimistisesti on ajateltu elinkelpoisen vyöhykkeen olevan Auringolle noin 0,7–1,6/1,75 AU eli kattavan Venuksen ja Marsin.[4][5]. Äärirajat vyöhykkeelle ovat eri tutkijoiden mukaan 0,5[6] – 3[7] AU. Eräs arvio sijoittaa elinkelpoisen vyöhykkeen etäisyydelle 0,8–1,6 AU.[8] Kolmannen optimistisen arvion mukaan elinkelpoinen vyöhyke HZ olisi Auringolle 0,9–1,4 AU.

Pessimististen arvioiden mukaan sen sisäraja olisi karkaavan kasvihuone-ilmiön takia vain 0,93–0,96 (monesti 0,95 AU) ja ulkoraja jäätymisen takia 1,01–1,02 AU.[9] Mutta kaikkein pessimistisin arvio väittää Maan kiertävän lähellä elinkelpoisen vyöhykkeen sisärajaa, joka olisi 0.99 AU[10]. Toisen hyvin pessiimistisen arvion mukaan ulkoraja olisi 1,01 AU[11].

Monesti käytetään Kastingin arviota, jossa sisäraja on 0,95 kasvihuone-ilmiön takia ja ulkoraja 1,37 AU jäätymisen takia.

Planeetan muut ominaisuudet kuin etäisyys keskustähdestä[muokkaa | muokkaa wikitekstiä]

Planeetan lämpötila riippuu monesta tekijästä: Keskustähden säteilyntuotosta ja etäisyydestä keskustähdestä, josta käsin yleensä elinkelpoista vyöhykettä tarkastellaan. Mutta planeetan lämpötilaan vaikuttavat yleensä myös valonheijastuskyky ja kasvihuone-ilmiö.

Myös planeetan radan soikeus, pyöriminen ja akselin kallistuma luovat vuoden- ja vuorokaudenaikoja. Planeetalla olevan veden määrä vaikuttaa mannerten ja merien määrään ja jakaumaan, kaasukehän kosteuteen ja pilvisyyteenkin. Pilvisyys vaikuttaa planeetan valonheijastuskykyyn ja lämpötilaan. Kaasukehän kosteus lisää kasvihuone-ilmiötä. Kaasukehän tiheys ja koostumus vaikuttavat muun muassa kasvihuone-ilmiöön ja veden olomuotoon ja näin lämpötilaan.

Jos kaasukehän paine on suurempi, elinkelpoinen vyöhyke on noin 0,1 AU aurinkoa lähempänä. Vähävetisillä, pääosin mentereesta koostuvalla avikkoplaneetalla nestemäistä vettä voi olla napojen lähellä, jos Maan etäisyys olisi 0,75 AU.

Alan tutkijoita[muokkaa | muokkaa wikitekstiä]

Vuonna 1953 Hubertus Strughold määritteli elinkelpoisen vyöhykkeen "ekosfäärin". Samana vuonna Harlow Shapley kirjoitti nestemäisen veden vyöhykkeestä. Tämän vyöhykkeen esittelivät myös Philip Morrison ja Giuseppe Cocconi SETI-aiheisessa tutkimusartikkelissaan vuonna 1959. Samoihin aikoihin sitä tutki myös Su-Shu Huang[12], joka väitti asuttavien planeettojen olevan harvinaisia moninkertaisilla tähdillä painovoimahäiriöiden vuoksi. Vuonna 1961 Frank Drake teki käsitteestä tunnetun Draken yhtälön yhteydessä. Vuonna 1964 planeettojen elinkelpoisuutta käsittelevän tutkimuksen julkaisi Stephen H. Dole[13], ja Isaac Asimov kiinnostui planeettojen elinkelpoisuudesta. 2000-luvulla Peter Ward, Donald Brownlee ja Guillermo Gonzalez toivat esille ja syvensivät galaktisen elinkelpoisen vyöhykkeen ajatusta.

Michael Hartin tutkimus[muokkaa | muokkaa wikitekstiä]

Michael H. Hart julkaisi vuonna 1979 tutkimuksen Habitable Zones About Main-Sequence Stars, jossa hän määritteli pitkään elinkelpoiselle vyöhykkeelle hyvin kapeat rajat, korkeintaan 0,95–1,01 AU.[14][15] Hartin mielestä olennainen elinkelpoista vyöhykettä määrittävä tekijä tähden säteilyn lisäksi oli sen pysyvyys suunnilleen samana sen ajan, minkä tutkijat arvioivat elämän kehityksen vaativan.[16][17] Hart ei ottanut huomioon karbonaatti-silikaatti-sykliä, joka kierrättää kasvihuonekaasu hiilidioksidin hiiltä.[12]

Walker ja Kasting[muokkaa | muokkaa wikitekstiä]

Nykyään tutkijat ovat taipuvaisia ajattelemaan, että Hartin esittämä sisäraja osuu lähelle oikeaa, mutta ulkorajan arviointi saattaa olla liian pessimistinen.

Karbonaatti-silikaatti-syklin toi esille ensi kertaa Walker ja sen pohjalta on ekokehiä laskeskellut Kasting[18], joka esittää minimiarvioksi elinkelpoiselle vyöhykkeelle 0,95–1,15 AU ja hieman optimistisemmaksi arvioksi 0,95–1,37 AU.

Elämän lämpötilavaatimukset[muokkaa | muokkaa wikitekstiä]

Erään lähteen mukaan ihmiselle sopivalla elinkelpoisella vyöhykkeellä olevan planeetan keskilämpötila on 0–30 °C.[19] Jotkut bakteerit selviävät 120 °C:n lämpötilassa (ks. Ekstremofiilit) kun taas monisoluinen elämä vaatii normaalipaineessa alle 52 °C:n lämpötilan. Näistä voidaan johtaa eläinten asuttava ekokehä AHZ, jolla lämpötila on 0–52 °C, ja mikrobien asuttava ekokehä MHZ. Maan organismit eivät kuitenkaan kestä pitkiä aikoja yli 45 °C:n lämpötiloja, joten ekosfäärin lämpötilarajan olisi oltava alle 40 °C.[20]

Tähden säteily[muokkaa | muokkaa wikitekstiä]

Tärkein elinkelpoisen vyöhykkeen rajoja määräävä tekijä on tähden säteilyntuotto eli luminositeetti. Tämä johtuu siitä, että esimerkiksi Maan lämpö on pääosin peräisin keskustähtemme Auringon säteilystä. Näin ollen Aurinkoa kirkkaampi tähti nostaisi Maan keskilämpötilaa. Myös jos Maa kiertäisi lähempänä aurinkoa, täällä olisi kuumempaa.

Auringon tai muun tähden säteilyn voimakkuus pinta-alaa kohti eli intensiteetti on kääntäen verrannollinen etäisyyden neliöön. Esimerkiksi puolen Auringon tehoisen tähden säteilyn voimakkuus on Maata vastaavalla tasolla  AU:n etäisyydellä.

Niinpä Maata vastaava etäisyys tähdelle, jonka kokonaissäteilyntuotto eli bolometrinen luminositeetti tunnetaan, voidaan laskea kaavasta.

missä
on elokehän keskietäisyys tähdestä,
on tähden luminositeetti, ja
on Auringon luminositeetti.

Maan lämpötilavaatimukset[muokkaa | muokkaa wikitekstiä]

Maan lämpötilan on pysyttävä tietyissä rajoissa. Muuten siitä kiehuu vesi pois, alkaa planeetan korventava kasvihuone-ilmiö tai kylmemmässä tapauksessa maa jäätyy lumipalloksi.

Maan keskilämpötila on saattanut olla liitukaudella 6–15 °C nykyistä korkeampi eli 21–30 °C. Maapallolla esiintyy aavikoilla yli 45 °C helteitä. Maapallo jäätyy viimeistään 40–60 °C pakkasessa pinnaltaan kokonaan, mahdollisesti jo −15 °C:ssä. (40–60?)

Planeetan jäätyminen[muokkaa | muokkaa wikitekstiä]

Pääartikkeli: Lumipallo-Maa

Mikhail Budykon vuonna 1969 tekemien tutkimusten mukaan Maa jäätyy kokonaan, jos jäätiköt etenevät jääkaudella keskimäärin 50. leveysasteelle.[21] tai 25.–30. leveysasteelle.[22] Nyt ne ovat noin 72. leveysasteella, ja jääkaudella olivat 62.–54. leveysasteella. Kun jäätiköt kasvavat yli kriittisen rajan, niiden Auringon säteilyä heijastava vaikutus jäähdyttää Maata, mikä se lisää jäätiköiden kasvua, ja lopulta koko Maa on jäässä. Tämä voisi tapahtua, kun Maa on 1,01–1,02 AU:n päässä Auringosta.

Tästä riippumatta S. Franck, A. Block, W. von Bloh, C. Bounama, H. -J. Schellnhuber ja Y. Svirezhev ovat julkaisseet tutkimuksen, jonka mukaan optimaalinen etäisyys Maan tyyppiselle planeetalle olisi 1,08 AU.[23]

Jos planeetan lämpötila laskee liikaa, planeetta jäätyy. Tämän rajan takana vain tulivuoritoiminnasta johtuva ilmakehän kasvava hiilidioksidipitoisuus voi kasvihuoneilmiöllään nostaa planeetan pintalämpötilan ennalleen. Hiilidioksidikin jäätyy, jos Auringon säteily laskee 0,53:een nykyisestä. Tämä aiheuttaa palautumattoman jäätymisen, koska kiinteä hiilidioksidi ei kykene ylläpitämään kasvihuoneilmiötä. Jos planeetalla kuitenkin on 8 barin hiilidioksidikaasukehä, Auringon säteily voisi laskea 0,36:een Maan säteilymäärästä, ja elämää voisi silti olla. Marsilla, joka saa Auringon säteilystä 0,32 Maan säteilymäärästä, tiedetään joskus olleen nestemäistä vettä. Tosin Marsilla ei voi olla pitkään paksua kaasukehää, johtuen sen pienestä painovoimasta.

Kasvihuone-ilmiö[muokkaa | muokkaa wikitekstiä]

Keskilämpötilan noustessa yli noin 33 °C, se alkaa nousta vesistöistä haihtuvan vesihöyryn takia merkittävästi.[9]

Jos planeetta kuumenee jostain syystä tarpeeksi, meristä alkaa haihtua huomattavia määriä vettä. Vesihöyry on merkittävä kasvihuonekaasu, joka taas nostaa planeetan lämpötilaa, joka taas haihduttaa lisää vettä. Näin tapahtuu karkaava kasvihuone-ilmiö. Toisaalta ainakin tiettyyn rajaan asti tämä lisää pilvisyyttä, joka laskee Maan pintalämpötilaa.

Jos on riittävän kuumaa, valtamerien kiehuminen luo niin suuren määrän vesihöyryä, että sen aiheuttama kasvihuone-ilmiö kuumentaa Maan pätsiksi jossa on jopa 1 500 °C.[24] Tällöin karbonaattikiviin sitoutunut hiilidioksidi vapautuu. Samalla vesihöyry karkaa avaruuteen hajottuaan hapeksi ja vedyksi.[25] Toinen vapautuva kasvihuonekaasu on syvämeren klatraattikivien metaani. Kasvihuoneilmiö on karannut Venuksessa, jonka keskilämpötila on 460 °C.

Karkaava kasvihuoneilmiö voisi käynnistyä Maassa jos auringon säteilyteho kasvaisi 1,1-kertaiseksi nykyisestä. Tämä vastaa Maan siirtämistä 0,95 AU:n päähän Auringosta.[9]

Jos planeetan kaasunpaine pinnalla on suurempi kuin Maassa, tähden elinkelpoinen vyöhyke on leveämpi[26].

Vuoroveden vaikutus[muokkaa | muokkaa wikitekstiä]

Pääartikkeli: Vuorovesi-Venus

Vuorovesi-ilmiö tuottaa voimakkaana jatkuvaa tulivuoritoimintaa, joka purkaa kuumentavia kasvihuonekaasuja. Punaiset kääpiöt tuottavat elinkelposile vyöhykkeelle suuren vuorovesivoiman. Niinpä ainakaan keveimmillä punaisilla kääpiöillä ei tämän mukaan olisi elinkelpoista vyöhykettä lainkaan[27].

Jatkuvasti asuinkelpoinen vyöhyke[muokkaa | muokkaa wikitekstiä]

Pääartikkeli: Auringonkaltainen tähti

Elämän kehitys on evoluutioajatusten mukaan hyvin hidasta ja vie laskutavasta riippuen 500 – 4 500 miljoonaa vuotta. Maassa monisoluisten eliöiden pohjat aitotumaiset ilmestyivät melko kauan aikaa sen jälkeen, kun alkeistumaiset bakteerit ilmestyivät. Aitotumaisten kehitys suuriksi monisoluisiksi vei pitkän ajan, ja älyelämän kehitys vei vielä tästä eteenpäin vaihtelevien arvioiden mukaan ainakin noin 600–700 miljoonaa vuotta.

Aurinko on tyypin G2V tähti, eli spektriluokan G2 pääsarjan tähti, jonka absoluuttinen kirkkaus on 4,8 ja ikä noin 4 500 miljoonaa vuotta. Alussa auringon kirkkaus oli noin 70 % nykyisestä, ja Maa pysyi lämpimänä luultavasti nykyistä suuremman ilmakehän hiilidioksidi- ja metaanipitoisuuden kasvihuonevaikutuksen takia. Auringon kirkastuminen on vuosimiljardien aikana lähentänyt Maata kohti asuinkelpoisen vyöhykkeen sisäreunaa.[28]

Maasta arvellaan tulevan elämälle liian kuuma paikka joskus 1 500 miljoonan vuoden kuluessa, kun Aurinko kirkastuu. Aurinkoa jonkin verran kirkkaammat keltaiset alijättiläiset ovat kehittyneet pois pääsarjasta. Esimerkiksi Beta Hydri on liian vanha elämälle.

Aurinkoa huomattavasti kuumemmat, raskaammat tähdet kehittyvät nopeasti pois pääsarjasta ja säteilevät elämälle ja ehkä planeetan kaasukehällekin vaarallista ultraviolettisäteilyä sitä enemmän, mitä kuumempi tähti on. Näin ollen siniset spektriluokkien O ja B pääsarjan tähdet eivät omista elinkelpoista vyöhykettä, niin kuin ei melko varmasti myöskään tyypin A pääsarjan tähdet.[29]

Aurinkoa huomattavasti kylmemmillä tähdillä, varsinkin punaisilla kääpiöillä oletetaan vuorovesilukkiutumisen mahdollisesti estävän tai ainakin rajoittavan planeettojen elinkelpoisuutta. Lisäksi oletetaan planeettojen massan olevan verrannollisia keskustähden massaan. Näin alle 0,4 Auringon massaiselta tähdeltä ei ehkä useinkaan löytyisi elinkelpoisia planeettoja. On myös väitetty pienimassaisten tähtien planeettojen jäätyvän helposti yhteyttämisen alkaessa. Kiistely avaruudessa hyvin yleisten punaisten kääpiöiden soveltuvuudesta elinkelpoisille planeetoille jatkuu yhä tutkijoiden parissa.

Jatkuvasti elinkelpoinen vyöhyke lienee varmasti suunnilleen pääsarjan tähdillä, joiden spektriluokka on F8V–K2V. Näitä on 49 lähimmästä tähdestä vain neljä eli noin 8 % ja sadasta noin 10 eli 10 %.[30] Jos halutaan pelata varman päälle, Auringon kaltaiseksi tähdeksi voidaan sanoa pääsarjan tähteä, jonka spektriluokka on G. kaikein varmimpia ehdokkaita elämälle ovat Auringon kaksoset, yksinäiset luokan G2 spektrityypin pääsarjan tähdet, joiden hyvin monet eri ominaisuudet ovat lähellä Auringon vastaavia ominaisuuksia. Tunnetuin Auringon kaksonen on 18 Scorpii. Gliesen 4388 lähitähden joukossa on vain 49 G2V-tyypin tähteä, joista kaikki eivät liene tarkkaan ottaen Auringon kaksosia. [31][32]

Kaksoistähdet[muokkaa | muokkaa wikitekstiä]

Kaksoistähdissä kaksi tähteä kiertää toisiaan. Suurin osa kaikista auringon tyyppisistä tähdistä on kaksoistähtien komponentteja: kaksoistähtiä kaikista 0,5–1,5 auringon massaisista tähdistä on noin 65 %. Aikaisemmin väitettiin, ettei kaksoistähdille voi syntyä planeettoja. Nykyisten tutkimusten mukaan voi, ja planeettojen radat pysyvät kohtalaisen vakaina, jos tähdet ovat joko aivan lähekkäin tai kohtuullisen kaukana toisistaan. Vakaa vyöhyke tähden ympärillä ulottuu siinä 1/5–1/7 päähän tähtien välimatkoista, tai ulkopuolelle 5x–7x päähän. Varmasti epävakaita ovat radat, jotka ovat 1/3–3,5 tähden välimatkan päässä.[33] Lisäksi on otettava huomioon, että jotkut teoriat vaativat Maata komeetoilta suojelevan Jupiterin Maata huomattavasti ulommas.

Nämä kriteerit täyttäviä tähtiä on noin 2/3 kaksoistähdistä. Erään toisen arvion mukaan viidellä prosentilla kaksoistähdistä voisi molempia tähtiä kiertää yhtä aikaa elinkelpoisessa vyöhykkeessä planeetta. Yksittäisiä tähtiä voisi kiertää planeetta 50 prosentissa tapauksista. Jos on kaksi tähteä, jotka kiertävät toisiaan 1 AU:n päässä, jonkinlaisia ratoja voi olla jo 2,5 AU:n päässä tähtien yhteisestä massakeskipisteestä. Esiplanetaariset kiekot näyttävät kaksoistähdillä olevan yhtä yleisiä kuin yksinäisillä tähdillä. Havaintojen mukaan esiplanetaarisia kiekkoja on eniten hyvin lähekkäisillä ja erillisillä kaksoistähdillä. Niillä nuorilla tähdillä joiden väli on 0–3 AU, ja myös niillä joiden väli on 50–500 AU on kiekkoja. Kaksoistähdillä, joiden väli on 3–50 AU, ei ole esiplanetaarisia kiekkoja.[33]

Kritiikkiä[muokkaa | muokkaa wikitekstiä]

Tähteä elämänvyöhykkeellä kiertävä planeetta ei ole välttämättä elin- tai asuinkelpoinen. Elinkelpoisia voivat olla mm. jotkut elämänvyöhykkeen ulkopuolella olevat kuut. Myöskään ei osata varmasti sanoa, että maan elämä olis syntynyt juuri Maassa. Näin ollen Maan eliöihin pohjautuvat elinkelpoisten vyöhykkeiden laskeskelut ovat korkeintaan suuntaa antavia.

Katso myös[muokkaa | muokkaa wikitekstiä]

Lähteet[muokkaa | muokkaa wikitekstiä]

  1. Yllättävän moni eksoplaneetta sopii elämälle. Tiede.fi.
  2. http://www.astro.utu.fi/edu/kurssit/perusteet/abiol.pdf
  3. Ensimmäinen elämälle suotuisa eksoplaneetta Natgeo.fi 6.10.2010
  4. Mauri Valtonen, Maailmankaikkeutta tutkimassa;Luku 19. Onko avaruudessa elämää; 19.3 Älyllinen elämä muissa tähdissä sivu 248
  5. Pekka Teerikorpi, Mauri valtonen;Kosmos, maailmamme muuttuva kuva; Ursan julkaisuja 42; URSA 1988;ISBN 951-9269-43-6; ISSN 0357-7937; Luku 42,;kohta Älyllisen elämän kehittyminen, kuva 42.1,; sivu 430
  6. Towards the Minimum Inner Edge Distance of the Habitable Zone Andras Zsom, Sara Seager, Julien de Wit
  7. An Estimate of the Prevalence of Biocompatible and Habitable Planets Fogg, M. J. , Journal of the British Interplanetary Society, vol. 45, 3–12. Article.
  8. Nils Mustelin, Elämää maailmankaikkeudessa, sivu 205
  9. a b c http://www.geosc.psu.edu/~kasting/PersonalPage/Pdf/Icarus_93.pdf (Arkistoitu – Internet Archive)
  10. https://iopscience.iop.org/article/10.1088/2041-8205/767/1/L8/meta A REVISED ESTIMATE OF THE OCCURRENCE RATE OF TERRESTRIAL PLANETS IN THE HABITABLE ZONES AROUND KEPLER M-DWARFS Ravi Kumar Kopparapu ublished 2013 March 25 • © 2013. The American Astronomical Society
  11. ScienceDirect www.sciencedirect.com. Viitattu 26.4.2019.
  12. a b http://www.aip.de/groups/sternphysik/stp/PDFFILES/2000/gaia_paper.pdf (Arkistoitu – Internet Archive)
  13. http://www.rand.org/pubs/commercial_books/2007/RAND_CB183-1.pdf
  14. Invited Session 2: The Search for Extrasolar Earths Astronomy Cast. Arkistoitu 15.3.2008. (englanniksi)
  15. Nils Mustelin, elämää maailmankakikkeudessa, sivu 207
  16. Stephen Webb, Missä kaikki ovat, URSA 2005; Ursan julkaisuja 96; ISBN 952-5329-45-3; ISBN 978-952-5329-45-2; ISSN 0357-7937: luku Heitä ei ole;Ratkaisu 36: Jatkuvasti elinkelpoiset vyöhykkeet ovat kapeita s182
  17. Nils Mustelin; Elämää maailmankaikkaudessa?;ISBN 951-0-09051-4 (sid.);WSOY 1980;Porvoo, Helsinki, Juva 1980;
  18. J.F. Kasting, D.P. Whitmire, R.T. Reynolds: Habitable Zones Around Main Sequence Stars (PDF) (Icarus 101 s. 108–128) Icarus 101. 1993. Arkistoitu 18.3.2009. (englanniksi)
  19. Suuntana Mars, s. 175
  20. Ward, Planeetta Maan elämä ja kuolema
  21. http://www.applet-magic.com/budyko.htm (Arkistoitu – Internet Archive)
  22. http://www.nature.com/nature/journal/v396/n6710/full/396453a0.html
  23. Habitable zone for Earth-like planets in the solar system
  24. http://www.geosc.psu.edu/~kasting/PersonalPage/Pdf/Icarus_88.pdf (Arkistoitu – Internet Archive)
  25. Planeetta maan elämä ja kuolema
  26. THE HABITABLE ZONE OF EARTH-LIKE PLANETS WITH DIFFERENT LEVELS OF ATMOSPHERIC PRESSURE Giovanni Vladilo Giuseppe Murante et al, The Astrophysical Journal, 767:65 (23pp), 2013, doi:10.1088/0004-637X/767/1/65
  27. http://www.astrobio.net/news-exclusive/tidal-forces-could-squeeze-out-planetary-water/
  28. PART VIII Initial Conditions for Astrobiology (PDF) (s. 1378 Figure 1, s 1382 Figure 2) Protostars and Planets IV. Arizona University. Arkistoitu 10.9.2016. (englanniksi)
  29. Mauri Valtonen, maailmankaikkautta tutkimassa, sivu 247
  30. http://www.astronomynotes.com/tables/tablesc.htm
  31. http://heasarc.gsfc.nasa.gov/W3Browse/star-catalog/cns3.html
  32. http://www.daviddarling.info/encyclopedia/G/Gliese_Catalogue.html (Arkistoitu – Internet Archive)
  33. a b Stars and Habitable Planets. Solstation.com. (englanniksi)

Aiheesta muualla[muokkaa | muokkaa wikitekstiä]

Commons
Commons
Wikimedia Commonsissa on kuvia tai muita tiedostoja aiheesta Tähteä ympäröivä elämänvyöhyke.