Vaihdannaisuus

Kohteesta Wikipedia
(Ohjattu sivulta Vaihdantalaki)
Loikkaa: valikkoon, hakuun

Kommutatiivisuus eli vaihdannaisuus on algebrallinen käsite. Se tarkoittaa sitä, että tietyn operaation lopputulos on sama, olivatpa operandit kummassa järjestyksessä tahansa.

Kommutatiivisuus voidaan määritellä seuraavasti: Olkoon joukko ja ja sen alkioita. Operaatio on kommutatiivinen, jos kaikilla ja toteutuu .

Esimerkkejä kommutatiivisista operaatioista[muokkaa | muokkaa wikitekstiä]

Luonnollisten lukujen yhteen- ja kertolasku ovat kommutatiivisia operaatioita, sillä a + b = b + a ja c * d = d * c kaikilla luonnollisilla luvuilla a, b, c ja d.

Määritellään vektorien pistetulo: Olkoot ja reaalisia tai kompleksisia vektoreita. Vektorien x ja y pistetulo määritellään seuraavasti:

Pistetulon määritelmästä ja kertolaskun kommutatiivisuudesta seuraa että pistetulo on kommutatiivinen:

Esimerkkejä ei-kommutatiivisista operaatioista[muokkaa | muokkaa wikitekstiä]

Vähennyslasku ja jakolasku eivät ole kommutatiivisia operaatioita, sillä 4−3 ≠ 3−4, ja 8:2 ≠ 2:8.

Katso myös[muokkaa | muokkaa wikitekstiä]

Kirjallisuutta[muokkaa | muokkaa wikitekstiä]

  • Häsä, Jokke; Rämö, Johanna: Johdatus abstraktiin algebraan. Helsinki: Gaudeamus, 2015. ISBN 978-952-495-361-0.