Potenssijoukko
Potenssijoukko on joukon kaikkien osajoukkojen joukko. [1] Joukon potenssijoukkoa merkitään tyypillisesti symboleilla tai tai .[2]
Johdanto
[muokkaa | muokkaa wikitekstiä]Tarkastellaan ensin nelialkioista äärellistä joukkoa . Joukko-opin mukaan tyhjä joukko on yksi osajoukko. Myös yksialkioiset osajoukot
ovat joukon osajoukkoja. Sitten voidaan muodostaa kuusi kaksialkioista osajoukkoa
ja neljä kolmialkioista osajoukkoa
Viimeinen osajoukko on joukko itse, sillä joukko-opin mukaan joukko on aina itsensä osajoukko.
Helposti nähdään, että neljän alkion joukosta voidaan muodostaa osajoukkoa. Muodostettu osajoukkojen joukko koostuu näistä 16 luetelluista osajoukoista ja sitä kutsutaan joukon potenssijoukoksi. Potenssijoukon koko eli mahtavuus on 16.
Määritelmä
[muokkaa | muokkaa wikitekstiä]Muodollinen määritelmä: jos on mielivaltainen joukko, niin on .
Mahtavuus
[muokkaa | muokkaa wikitekstiä]Joukon mahtavuus voidaan merkitä tai .
Äärellisen joukon potenssijoukon mahtavuus voidaan laskea seuraavasti. Yleisesti voidaan merkitä, montako jäsenistä osajoukkoa voidaan ottaa mahtavuudeltaan olevasta joukosta:
Kun lasketaan yhteen tyhjän joukon, kaikki yksialkioiset osajoukot, kaksialkioiset, ..., (n-1)-alkioiset ja joukko itse, saadaan
Jos äärellisen joukon mahtavuus on , niin sen potenssijoukon mahtavuus on kahden potenssi eli .
Tyhjän joukon potenssijoukko sisältää määritelmän mukaan tyhjän joukon, mutta myös itsensä. Koska tyhjiä joukkoja on olemassa vain yksi, ei sitä voi esiintyä osajoukkojen joukossa kahdesti. Tyhjässä joukossa ei ole alkioita, joista voidaan muodostaa osajoukkoja. Tällöin on . Tyhjän joukon mahtavuus on , niin sen potenssijoukon mahtavuus on .
Numeroituvasti äärettömän joukon potenssijoukon mahtavuus on siten , jos numeroituvasti äärettömän joukon mahtavuus on . Voidaan osoittaa, että eli sama kuin reaalilukujen mahtavuus. Se on suurempi kuin luonnollisten lukujen mahtavuus ja se merkitään . Tällaisen potenssijoukon mahtavuus on ylinumeroituvasti ääretön.[4][5][6]
Voidaan todistaa, ettei joukon ja sen potenssijoukon välillä ei ole bijektiota. Silloin ei joukon numeroituvuudesta voida päätellä potenssijoukon numeroituvuutta.[7][3]
Ylinumeroituvien joukkojen potenssijoukot ovat entistä mahtavampia, jolloin esimerkiksi . Potenssijoukosta muodostettu potenssijoukko on edellisiä mahtavampi. Niiden mahtavuutta on ollut tapana merkitä kardinaaleilla . Niilläkin on suuruusjärjestys
Katso myös
[muokkaa | muokkaa wikitekstiä]Lähteet
[muokkaa | muokkaa wikitekstiä]- Fuchs, Walter R.: Matematiikka. Suomentanut Mattila, Pekka. Länsi-Saksa: Kirjayhtymä, 1968.
- Barrow John D.: Lukujen taivas. Suomentanut Vilikko, Risto. Smedjebacken, Ruotsi: Art House, 1999. ISBN 951-884-231-0.
Viitteet
[muokkaa | muokkaa wikitekstiä]- ↑ Häsä, Jokke & Rämö, Johanna: Johdatus abstraktiin algebraan, s. 17. Helsinki: Gaudeamus, 2015. ISBN 978-952-495-361-0.
- ↑ Weisstein, Eric W.: Power set (Math World – A Wolfram Web Resource) Wolfram Research. (englanniksi)
- ↑ a b c Williams, Michael B.: Cardinality (pdf) (luentomoniste) Texas, USA: University of Texas at Austin. (englanniksi)
- ↑ Weisstein, Eric W.: Countably Infinite (Math World – A Wolfram Web Resource) Wolfram Research. (englanniksi)
- ↑ Weisstein, Eric W.: Aleph-0 (Math World – A Wolfram Web Resource) Wolfram Research. (englanniksi)
- ↑ Weisstein, Eric W.: Aleph-1 (Math World – A Wolfram Web Resource) Wolfram Research. (englanniksi)
- ↑ Schwartz, Rich: Countable and Uncountable Sets (pdf) (luentomoniste) 2007. Providence: Brown University. (englanniksi)
Kirjallisuutta
[muokkaa | muokkaa wikitekstiä]- Lipschutz, Seymour: Set Theory and Related Topics. McGraw-Hill, 1964. ISBN 0-07-037986-6.