Neljännen asteen yhtälön ratkaisukaava

Kohteesta Wikipedia
Loikkaa: valikkoon, hakuun
Neljännen asteen polynomiyhtälön kuvaaja. Neljäs aste on korkein polynominen aste, jossa on löydettävissä yhtälölle yleinen raktaisukaava.

Neljännen asteen yhtälön ratkaisukaava on kaava, jolla voidaan ratkaista polynomiyhtälöt, jotka ovat muotoa ax^4+bx^3+cx^2+ex+f=0, missä a\not =0.

Kaavan johdon idea[muokkaa | muokkaa wikitekstiä]

Neljännen asteen yhtälön ratkaisukaava on varsin pitkä, joten esitetään vain idea, jolla kaavaan päädytään. Aluksi yhtälöön tehdään sopiva muotoa x=y+g oleva sijoitus, jolloin kolmannen asteen termin kerroin häviää. Lisätään nyt yhtälöön puolittain termejä siten, että yhtälön vasen puoli voidaan tulkita olevan neliö muotoa (x^2+g)^2. Lisätään tämän jälkeen puolittain yhtälön molemmille puolille termejä siten, että yhtälön vasen puoli voidaan tulkita neliöksi (x^2+g+y)^2, missä y on tuntematon suure. Kiinnitetään nyt y:n arvo sellaiseksi, että yhtälön oikealla puolella oleva trinomi tulee neliöksi. Tämä saadaan, kun ratkaistaan yhtälön oikealla puolella olevan lausekkeen nollakohdat y:n suhteen. Tämä on mahdollista, sillä saatu yhtälö on kolmatta astetta, ja sille on kehitetty ratkaisukaava. Nyt y:n arvo voidaan sijoittaa alkuperäiseen yhtälöön, ja ottaa yhtälöstä puolittain neliöjuuri. Saatu yhtälö on toista astetta, joten ratkaisemalla tämä yhtälö saadaan selville alkuperäisen yhtälön juuret.

Katso myös[muokkaa | muokkaa wikitekstiä]

Aiheesta muualla[muokkaa | muokkaa wikitekstiä]

Tämä matematiikkaan liittyvä artikkeli on tynkä. Voit auttaa Wikipediaa laajentamalla artikkelia.