Geometrinen sarja

Wikipediasta
Siirry navigaatioon Siirry hakuun
Kuvasta nähdään, että geometrinen sarja 1 + 1/2 + 1/4 + 1/8 + ... suppenee kohti lukua 2.

Matematiikassa geometrisella sarjalla tarkoitetaan sarjaa, jossa kahden peräkkäisen termin suhde on vakio. Jos tämä vakio on q ja sarjan ensimmäinen termi on a, sarjan n:s termi on aqn-1. Tällöin sarjaa merkitään

[1]


Sarja suppenee, kun −1 < q < 1, ja tällöin sen summaksi saadaan

Osasummille on voimassa[2]

kun

kun

Todistus osasumman kaavalle:

Olkoon n määrä sarjan termejä seuraavasti:

Merkitään osasummaa seuraavasti

Geometrisen sarjan avulla voidaan muuttaa päättymätön jaksollinen desimaaliluku murtoluvuksi.[3]

  1. Adams, Robert A.: ”9.2. Infinite Series”, Calculus: A Complete Course, s. 480. Pearson: Adisson Wesley, 6. painos.
  2. Adams, Robert A.: ”9.2. Infinite Series”, Calculus: A Complete Course, s. 481. Pearson: Adisson Wesley, 6. painos.
  3. Geometric series, Converting recurring decimal to fraction www.nabla.hr. Viitattu 27.8.2023.

Kirjallisuutta

[muokkaa | muokkaa wikitekstiä]
Tämä matematiikkaan liittyvä artikkeli on tynkä. Voit auttaa Wikipediaa laajentamalla artikkelia.