Bézout’n lemma
Tähän artikkeliin tai osioon ei ole merkitty lähteitä, joten tiedot kannattaa tarkistaa muista tietolähteistä. Voit auttaa Wikipediaa lisäämällä artikkeliin tarkistettavissa olevia lähteitä ja merkitsemällä ne ohjeen mukaan. |
Bézout’n lemma (myös Bézout’n identiteetti, Bézout’n yhtälö) on ranskalaisen matemaatikon Étienne Bézout’n (1730–1783) mukaan nimetty lukuteorian lause, jonka mukaan kokonaislukujen ja suurin yhteinen tekijä (syt) voidaan esittää muodossa , missä ja ovat kokonaislukuja. Luvut ja (joita kutsutaan myös Bézout’n luvuiksi) voidaan selvittää esimerkiksi Eukleideen algoritmilla.
Esimerkki
[muokkaa | muokkaa wikitekstiä]Lasketaan lukujen 33 ja 21 suurin yhteinen tekijä Eukleideen algoritmilla:
Kolme on suurin yhteinen tekijä, koska se oli jakajana viimeisessä jakolaskussa. Kun suurin yhteinen tekijä halutaan esittää Bézout’n identiteetin mukaisessa muodossa , lähdetään sijoittamalle Eukleideen algoritmin tuloksesta (yhtälöt alhaalta ylöspäin)
.
Eli On huomionarvoista, että esitys ei ole uniikki; jos luvut ja ovat Bézout’n lukuja, myös luvut:
ovat Bézout’n lukuja.