Ero sivun ”Hamiltonin mekaniikka” versioiden välillä

Wikipediasta
Siirry navigaatioon Siirry hakuun
[arvioimaton versio][arvioimaton versio]
Poistettu sisältö Lisätty sisältö
Välitallennus
 
Toinen välitallennus
Rivi 6: Rivi 6:


Kannattaa huomata, että suoraviivaisen liikkeen tapauksessa <math>\dot{q}</math>:t ovat nopeuksia ja konjugoitu impulssi vastaa täsmälleen kappaleen [[liikemäärä]]ä. Pyörimisliikkeen tapauksessa <math>\dot{q}</math>:t ovat kulmanopeuksia ja konjugoidun impulssin määritelmä vastaa kappaleen [[pyörimismäärä]]ä.
Kannattaa huomata, että suoraviivaisen liikkeen tapauksessa <math>\dot{q}</math>:t ovat nopeuksia ja konjugoitu impulssi vastaa täsmälleen kappaleen [[liikemäärä]]ä. Pyörimisliikkeen tapauksessa <math>\dot{q}</math>:t ovat kulmanopeuksia ja konjugoidun impulssin määritelmä vastaa kappaleen [[pyörimismäärä]]ä.

Määritellään nyt uusi funktio

:<math>H = \sum_i \dot{q}_i p_i - L</math>,

jota kutsutaan systeemin '''Hamiltonin funktioksi''' (engl. ''Hamiltonian''). Tämän funktion avulla saadaan kirjoitettua systeemiä kuvaavat liikeyhtälöt.

:<math>\dot{q}_i = \frac{\partial H}{\partial p_i}</math>
:<math>\dot{p}_i = -\frac{\partial H}{\partial q_i}</math>

sekä

:<math>\frac{\partial H}{\partial t} = -\frac{\partial L}{\partial t}</math>

Kaksi ensimmäistä yhtälöä ovat systeemin '''Hamiltonin yhtälöt''' eli '''kanoniset yhtälöt'''. Ne muodostavat jokaista systeemiin kuuluvaa kappaletta kohti 2N ensimmäisen kertaluvun [[differentiaaliyhtälö]]n ryhmää. Tämä ei kuitenkaan yleensä haittaa, sillä 1. kertaluvun differentiaaliyhtälöiden ratkaiseminen on ryhmänäkin huomattavasti helpomaa kuin korkeamman kertaluvun yhtälöt, joiden ratkaisemiseen [[Newtonin mekaniikka|Newtonin]] ja Lagrangen lähestymistavat johtavat. Lisäksi osoittautuu, että Hamiltonin yhtälöiden muoto on matemaattiselta kannalta aivan erityisen oivallinen. Yhtälöillä on myös syvällinen yhteys fysikaalisen systeemin toimintaan.

Viimeinen yhtälö ei ole varsinainen liikeyhtälö, mutta se osoittaa, että <math>H</math> riippuu ajasta vain ja ainoastaan silloin jos aika esiintyy Hamiltonin funktiossa eksplisiittisesti. Toisin sanoen Hamiltonin funktio on (niitä hyvin epätavallisia poikkeuksia, joissa aika esiintyy, lukuunottamatta) säilyvä suure. Voidaan osoittaa, että Hamiltonin funktio vastaa systeemin kokonaisenergiaa.

Hamiltonin mekaniikka on mekaniikan perusformalismi käytännössä kaikessa mekaniikkaan liittyvässä tutkimuksessa. Aivan erityisen tehokkaaksi työkaluksi se on osoittautunut [[kvanttimekaniikka|kvanttimekaniikassa]], jonka formalismi perustuu käytännössä kokonaan Hamiltonin mekaniikkaan.


== Katso myös ==
== Katso myös ==

Versio 19. marraskuuta 2006 kello 01.08

Hamiltonin mekaniikka on irlantilaisen William Rowan Hamiltonin vuonna 1833 esittämä lähestymistapa klassiseen mekaniikkaan. Se muistuttaa jonkin verran Lagrangen mekaniikkaa ja useimmissa oppikirjoissa Hamiltonin mekaniikan käsittelyyn siirrytäänkin Lagrangen mekaniikan tulosten kautta. Hamiltonin mekaniikka voidaan kuitenkin johtaa myös kokonaan Lagrangen mekaniikasta riippumatta, joten se muodostaa aidosti erilaisen lähestymistavan.

Olkoon tutkittavan systeemin (yleistetyt) paikkakoordinaatit ja vastaavat yleistetyt nopeudet. Nyt systeemiä kuvaa Lagrangen funktio . Määritellään uusi, nopeutta muistuttava suure, konjugoitu impulssi

.

Kannattaa huomata, että suoraviivaisen liikkeen tapauksessa :t ovat nopeuksia ja konjugoitu impulssi vastaa täsmälleen kappaleen liikemäärää. Pyörimisliikkeen tapauksessa :t ovat kulmanopeuksia ja konjugoidun impulssin määritelmä vastaa kappaleen pyörimismäärää.

Määritellään nyt uusi funktio

,

jota kutsutaan systeemin Hamiltonin funktioksi (engl. Hamiltonian). Tämän funktion avulla saadaan kirjoitettua systeemiä kuvaavat liikeyhtälöt.

sekä

Kaksi ensimmäistä yhtälöä ovat systeemin Hamiltonin yhtälöt eli kanoniset yhtälöt. Ne muodostavat jokaista systeemiin kuuluvaa kappaletta kohti 2N ensimmäisen kertaluvun differentiaaliyhtälön ryhmää. Tämä ei kuitenkaan yleensä haittaa, sillä 1. kertaluvun differentiaaliyhtälöiden ratkaiseminen on ryhmänäkin huomattavasti helpomaa kuin korkeamman kertaluvun yhtälöt, joiden ratkaisemiseen Newtonin ja Lagrangen lähestymistavat johtavat. Lisäksi osoittautuu, että Hamiltonin yhtälöiden muoto on matemaattiselta kannalta aivan erityisen oivallinen. Yhtälöillä on myös syvällinen yhteys fysikaalisen systeemin toimintaan.

Viimeinen yhtälö ei ole varsinainen liikeyhtälö, mutta se osoittaa, että riippuu ajasta vain ja ainoastaan silloin jos aika esiintyy Hamiltonin funktiossa eksplisiittisesti. Toisin sanoen Hamiltonin funktio on (niitä hyvin epätavallisia poikkeuksia, joissa aika esiintyy, lukuunottamatta) säilyvä suure. Voidaan osoittaa, että Hamiltonin funktio vastaa systeemin kokonaisenergiaa.

Hamiltonin mekaniikka on mekaniikan perusformalismi käytännössä kaikessa mekaniikkaan liittyvässä tutkimuksessa. Aivan erityisen tehokkaaksi työkaluksi se on osoittautunut kvanttimekaniikassa, jonka formalismi perustuu käytännössä kokonaan Hamiltonin mekaniikkaan.

Katso myös

Tämä fysiikkaan liittyvä artikkeli on tynkä. Voit auttaa Wikipediaa laajentamalla artikkelia.