Mediaani

Kohteesta Wikipedia
Loikkaa: valikkoon, hakuun
Tämä artikkeli käsittelee tilastollisen matematiikan käsitettä. Geometriassa mediaani on keskijanan toinen nimitys.

Mediaani tarkoittaa tilastollisessa matematiikassa erästä keskilukua. Mediaanin tunnus on Md.[1]

Mediaani on järjestetyn joukon keskimmäinen alkio. Joukon alkiot, tai tilastotieteellisessä kielenkäytössä havainnot, on mitattava vähintään ordinaaliasteikolla. Jos alkioiden määrä on parillinen, mediaaniksi ilmoitetaan usein molemmat alkiot, tai numeroarvojen tapauksessa voidaan laskea kahden keskimmäisen luvun keskiarvo. Jos havaintoarvoja on pariton määrä, mediaani on joukon keskimmäinen havaintoarvo, ks. esimerkki 1. Kun havaintoarvot on asetettu suuruusjärjestykseen, voidaan mediaani määrittää laskemalla sitä vastaavan havaintoarvon järjestysluku (paikka luettelossa) kaavasta (n+1)/2. Vrt. esimerkki 1 (5+1)/2 = 3 => luettelon kolmas luku (havaintoarvo) on mediaani.[2]

Casellan ja Bergerin kirjassa Statictical Inferencelähde tarkemmin? on annettu jakauman mediaanin määritelmä. Kirjan mukaan jakauman X mediaani on luku m, jolle P(X\leq m)\geq \frac{1}{2} ja P(X\geq m)\geq \frac{1}{2}.

Esimerkki 1: Joukon {2, 2, 3, 8, 14} mediaani on 3. Joukon {2, 2, 3, 100} mediaani on 2,5 tai {2, 3}.

Esimerkki 2: Havaintojen {Approbatur, Magna cum laude approbatur, Laudatur} mediaani on Magna cum laude approbatur.

Esimerkki 3: Äänestyksessä, jossa äänestäjät valitsevat määrää kuvaavan luvun väliltä 0–100, on annettu äänet 1, 1, 50, 60, 65, 70 ja 99. Tämän joukon mediaani on 60 (kun taas keskiarvo on noin 49,4).


Mediaani kuvaa monissa tapauksissa jakauman tyypillistä arvoa luotettavammin kuin keskiarvo. Näin on etenkin silloin, kun jakauma on vino.[1]

Esimerkki 4: Kuvitteellisen työpaikan palkkaselvityksessä todettiin seuraavat kuukausipalkat: 1 000, 1 100, 1 200, 1 300 ja 100 000 €. Tämän työpaikan mediaanipalkka on 1 200 € ja keskipalkka 20 920 €.

Lähteet[muokkaa | muokkaa wikitekstiä]

  1. a b Wuolijoki, Hilkka & Norlamo, Pekka: ”Mediaani”, Tutkivaa matematiikkaa 1. Tilastot ja todennäköisyys, s. 36–38. Porvoo: Weilin+Göös, 1994. ISBN 951-35-5236-5.
  2. Holopainen, Martti; Tenhunen, Lauri & Vuorinen, Pertti: Tutkimusaineiston analysointi ja SPSS, s. 136–137. Järvenpää: Yrityssanoma, 2004. ISBN 952-5383-21-0.