Otoshajonta

Wikipedia
Loikkaa: valikkoon, hakuun

Otoshajonta eli otoskeskihajonta s on otosvarianssin s^2 neliöjuuri, missä

s^2 = \sum_{i = 1}^{n} \frac{(x_{i}-\overline{x})^{2}}{n-1} \, \, \, \,  { \ }

ja

\overline{x} = \sum_{i = 1}^{n} \frac{x_{i}}{n} \, \, \, \, \,  { \ }

on tutkittavan muuttujan x otoskeskiarvo.

Kun luvut x_1,x_2,\ldots,x_n ovat satunnainen otos isommasta joukosta X, s on harhaton estimaatti joukon X keskihajonnasta. Intuitiivisesti tämä selittyy sillä, että otoskeskiarvo \overline{x} poikkeaa joukon X todellisesta keskiarvosta otoksen suuntaan, mikä tuottaisi keskihajonnan (s^2 yllä) kaavaan liian pienen osoittajan, mutta yhdellä pienennetty nimittäjä kompensoi tämän harhan. Jos käytettävissä olisi joukon X todellinen keskiarvo, nimittäjässä pitäisi olla n kuten yleensäkin keskihajonnan kaavassa.

Katso myös[muokkaa | muokkaa wikitekstiä]

Tämä matematiikkaan liittyvä artikkeli on tynkä. Voit auttaa Wikipediaa laajentamalla artikkelia.