Ero sivun ”Hermiittinen matriisi” versioiden välillä

Wikipediasta
Siirry navigaatioon Siirry hakuun
[katsottu versio][katsottu versio]
Poistettu sisältö Lisätty sisältö
Xyzäö (keskustelu | muokkaukset)
p stilisointia
Wgn (keskustelu | muokkaukset)
p kh
Rivi 23: Rivi 23:
*Eri suuruisiin ominaisarvoihin liittyvät [[ominaisvektori]]t ovat toisiinsa nähden [[ortogonaalinen matriisi|ortogonaalisia]].
*Eri suuruisiin ominaisarvoihin liittyvät [[ominaisvektori]]t ovat toisiinsa nähden [[ortogonaalinen matriisi|ortogonaalisia]].


On siis mahdollistä löytää <math>\mathbb{C}^n</math>:n [[Vektoriavaruuden kanta|ortonormaali kanta]], joka koostuu yksinomaan hermiittisen matriisin ominaisvektoreista.
On siis mahdollista löytää <math>\mathbb{C}^n</math>:n [[Vektoriavaruuden kanta|ortonormaali kanta]], joka koostuu yksinomaan hermiittisen matriisin ominaisvektoreista.


Kahden hermiittisen matriisin summa on hermiittinen matriisi ja [[kääntyvä matriisi|kääntyvän]] hermiittisen matriisin käänteismatriisi on hermiittinen. Hermiittisten matriisien <math>A</math> ja <math>B</math> tulo on hermiittinen vain, jos matriisit [[vaihdannaisuus|kommutoivat]], eli <math>AB = BA</math>.
Kahden hermiittisen matriisin summa on hermiittinen matriisi ja [[kääntyvä matriisi|kääntyvän]] hermiittisen matriisin käänteismatriisi on hermiittinen. Hermiittisten matriisien <math>A</math> ja <math>B</math> tulo on hermiittinen vain, jos matriisit [[vaihdannaisuus|kommutoivat]], eli <math>AB = BA</math>.

Versio 14. maaliskuuta 2018 kello 23.56

Hermiittinen matriisi on neliömatriisi, jonka alkiot ovat kompleksilukuja ja joka on itsensä hermitoitu matriisi, eli matriisi on oman transpoosinsa kompleksikonjugaatti.[1] Toisin sanoen rivillä ja sarakkeella oleva alkio on rivillä ja sarakkeella olevan alkion kompleksikonjugaatti:

Voidaan myös merkitä:

,

tai kuten on tavallisempaa fysiikassa

Esimerkiksi

on hermiittinen matriisi.

Hermiittisen matriisin ominaisuuksia

Jokaisen hermiittisen matriisin päädiagonaalin alkiot ovat aina reaalilukuja. Matriisi, jonka kaikki alkiot ovat reaalilukuja, on hermiittinen vain, jos se on symmetrinen matriisi, eli jos se on symmetrinen päädiagonaalin suhteen. Reaalinen symmetrinen matriisi on täten erikoistapaus hermiittisestä matriisista.

Jokainen hermiittinen matriisi on normaali, joten siihen voidaan soveltaa spektraalilausetta. Sen mukaan jokainen hermiittinen matriisi voidaan diagonalisoida unitaarisen matriisin avulla ja syntyneen diagonaalimatriisin alkiot ovat reaalilukuja. Tästä seuraa kaksi keskeistä tulosta:

On siis mahdollista löytää :n ortonormaali kanta, joka koostuu yksinomaan hermiittisen matriisin ominaisvektoreista.

Kahden hermiittisen matriisin summa on hermiittinen matriisi ja kääntyvän hermiittisen matriisin käänteismatriisi on hermiittinen. Hermiittisten matriisien ja tulo on hermiittinen vain, jos matriisit kommutoivat, eli .

Hermiittiset -matriisit muodostavat vektoriavaruuden reaalilukujen suhteen, mutta eivät kompleksilukujen suhteen. Tämän vektoriavaruuden dimensio on . (Yksi vapausaste päälävistäjän alkiota kohti ja kaksi vapausastetta lävistäjän yläpuolella olevaa alkiota kohti.) Jos hermiittisen matriisin kaikki ominaisarvot ovat positiivisia, matriisia kutsutaan positiivisesti definiitiksi. Jos taas kaikki ovat epänegatiivisia, matriisi on positiivisesti semidefiniitti.

Lähteet

  1. Datta: Matrix And Linear Algebra, 2. painos, s. 274. PHI Learning Pvt. Ltd.. ISBN 9788120336186. (englanniksi)

Kirjallisuutta