Ero sivun ”Avoin joukko” versioiden välillä

Wikipediasta
Siirry navigaatioon Siirry hakuun
[katsottu versio][katsottu versio]
Poistettu sisältö Lisätty sisältö
yleisessä mielessä varsin abstrakti käsite; oppikirjoissa käsite määritellään ensin R:n, sitten metristen avaruuksien ja vasta sen jälkeen topologisten avaruuksien osajoukoille; samoin lienee tehtävä täälläkin.
Lebha (keskustelu | muokkaukset)
p link fix
Rivi 1: Rivi 1:
'''Avoin joukko''' on [[Topologia (matematiikka)|topologian]] keskeisin peruskäsite. Avoimien joukkojen avulla voidaan suoraan määritellä mm. topologian keskeiset käsitteet ''[[raja-arvo]]'', ''[[jatkuva funktio|jatkuvuus]]'' ja ''[[yhtenäisyys]]''.
'''Avoin joukko''' on [[Topologia (matematiikka)|topologian]] keskeisin peruskäsite. Avoimien joukkojen avulla voidaan suoraan määritellä mm. topologian keskeiset käsitteet ''[[raja-arvo]]'', ''[[jatkuva funktio|jatkuvuus]]'' ja ''[[yhtenäisyys]]''.


Avoimen joukon käsite on eräänlainen [[reaaliluku]]jen joukossa määritellyn [[avoin väli|avoimen välin]] käsitteen yleistys. [[Metrinen avaruus|Metrisessä avaruudessa]] avoin joukko määritellään sen [[metriikka|metriikan]] avulla tietyt ehdot toteuttavaksi avaruuden osajoukoksi. [[Yleinen topologia|Yleisessä topologiassa]] sen sijaan [[topologinen avaruus]] määritellään valitsemalla perusjoukosta kokoelma sen osajoukkoja, joita sanotaan ''avoimiksi joukoiksi'' ja jotka yhdessä määrittelevät avaruuden topologian.
Avoimen joukon käsite on eräänlainen [[reaaliluku]]jen joukossa määritellyn [[avoin väli|avoimen välin]] käsitteen yleistys. [[Metrinen avaruus|Metrisessä avaruudessa]] avoin joukko määritellään sen [[Metriikka (matematiikka)|metriikan]] avulla tietyt ehdot toteuttavaksi avaruuden osajoukoksi. [[Yleinen topologia|Yleisessä topologiassa]] sen sijaan [[topologinen avaruus]] määritellään valitsemalla perusjoukosta kokoelma sen osajoukkoja, joita sanotaan ''avoimiksi joukoiksi'' ja jotka yhdessä määrittelevät avaruuden topologian.


== Avoimet joukot metrisessä avaruudessa ==
== Avoimet joukot metrisessä avaruudessa ==

Versio 12. joulukuuta 2017 kello 16.04

Avoin joukko on topologian keskeisin peruskäsite. Avoimien joukkojen avulla voidaan suoraan määritellä mm. topologian keskeiset käsitteet raja-arvo, jatkuvuus ja yhtenäisyys.

Avoimen joukon käsite on eräänlainen reaalilukujen joukossa määritellyn avoimen välin käsitteen yleistys. Metrisessä avaruudessa avoin joukko määritellään sen metriikan avulla tietyt ehdot toteuttavaksi avaruuden osajoukoksi. Yleisessä topologiassa sen sijaan topologinen avaruus määritellään valitsemalla perusjoukosta kokoelma sen osajoukkoja, joita sanotaan avoimiksi joukoiksi ja jotka yhdessä määrittelevät avaruuden topologian.

Avoimet joukot metrisessä avaruudessa

Kuvan joukko V ei ole avoin, sillä pisteen p ympäristö ei sisälly joukkoon V.

Metrisessä avaruudessa avaruuden osajoukko A on avoin, jonka jokaisella pisteellä x on ympäristö U (x, , joka kokonaisuudessaan sisältyy joukkoon A.[1] Toisin sanoen jokaista joukon A pistettä x kohti voidaan valita sellainen positiivinen luku ε, että kaikki pisteet, joiden etäisyys x:stä on pienempi kuin ε, kuuluvat myös joukkoon A.

Yhtäpitävästi voitaisiin määritellä, että joukko A on avoin, jos mikään sen reunapiste ei kuulu joukkoon A.

Esimerkiksi reaalilukujen joukossa avoimia joukkoja ovat avoimet välit, avoimia välejä yhdistämällä saadut joukot, muotoa (a, &infinity) tai (-&infinity, a) olevat avoimet puolisuorat, itse sekä tyhjä joukko.

Jokaisessa metrisessä avaruudessa pätee:

  • Avaruus kokonaisuudessaan sekä tyhjä joukko ovat avoimia.
  • Avoimien joukkojen yhdiste on avoin joukko, olipa yhdisteessä mukana äärellinen tai ääretön määrä avoimia joukkoja.
  • Sellainen avoimien joukkojen leikkaus, jossa on mukana vain äärellinen määrä avoimia joukkoja, on myös avoin joukko.

Avoimien joukkojen leikkaus, jossa on mukana äärettömän monta joukkoa, ei välttämättä ole avoin. Esimerkiksi reaalilukujen joukossa kaikkien avoimien välien (a - ε, a + ε) leikkaus, kun ε saa kaikki reaalilukuarvot, käsittää vain pisteen a, eikä se ole avoin.

Annetun metrisen avaruuden A kaikki avoimet joukot muodostavat kokoelman, jota sanotaan avaruuden topologiaksi.

Avoimet joukot topologisessa avaruudessa

Jo metrisissä avaruuksissa avoimen joukon käsitteen avulla voidaan karakterisoisa monia topologisia käsitteitä kuten raja-arvo ja jatkuvuus. Näiden käsitteiden kannalta metriikka sinänsä kuitenkin on epäoleellinen; merkitystä on vain sillä, mitkä joukot ovat avoimia. Tämä on antanut aiheen määritellä yleisempi topologisen avaruuden käsite.

Topologinen avaruus määritellään valitsemalla annetusta joukosta X kokoelma sen osajoukkoja, joita nimetään avoimiksi. Tämä kokoelma on valittava niin, että se toteuttaa edellä todetut, jo metrisissä avaruuksissa pätevät tulokset:

  • Avaruus kokonaisuudessaan sekä tyhjä joukko ovat avoimia.
  • Avoimien joukkojen yhdiste on avoin joukko, olipa yhdisteessä mukana äärellinen tai ääretön määrä avoimia joukkoja.
  • Sellainen avoimien joukkojen leikkaus, jossa on mukana vain äärellinen määrä avoimia joukkoja, on myös avoin joukko.

Tätä avoimien joukkojen kokoelmaa sanotaan joukon X topologiaksi.

Samallekin joukolle voidaan määritellä avointen joukkojen kokoelma ja siten sen topologia monella eri tavalla, kunhan se vain täyttää edellä annetut ehdot. Esimerkiksi missä tahansa joukossa voidaan valita sellainenkin topologia, diskreetti topologia, jossa kaikki avaruuden osajoukot ovat avoimia, tai toisaalta myös sellainen, minitopologia, jossa vain avaruus itse ja tyhjä joukko ovat avoimia.

Olkoon topologinen avaruus. Tällöin joukko on siis avoin, jos ja vain jos . Toisin sanoen topologisen avaruuden topologian alkioita kutsutaan avoimiksi joukoiksi.

Esimerkkejä

  • Erityisen tärkeitä avoimia joukkoja ovat metrisen avaruuden avoimet kuulat, eli joukot, joihin kuuluvat avaruuden ne pisteet, joiden etäisyys jostakin annetusta pisteestä on pienempi kuin jokin vakio. Ne muodostavat kannan metrisen avaruuden ns. tavalliselle topologialle. Erityisesti reaaliakselin avoin väli on klassinen esimerkki avoimesta joukosta.

Ympäristöt

Avoimiin joukkoihin liittyy oleellisesti ympäristön käsite. Jos ja on olemassa avoin joukko , jolla , niin joukkoa U kutsutaan pisteen x ympäristöksi.

Avoin joukko voidaan karakterisoida myös ympäristöjen avulla. Voidaan nimittäin osoittaa, että joukko U on avoin, jos ja vain jos jokaisella joukon U pisteellä on olemassa ympäristö, joka sisältyy joukkoon U.

Ympäristöjen ja avoimien joukkojen avulla voidaan helposti määritellä keskeisiä topologian käsitteitä:

  • Topologisen avaruuden jonolla on raja-arvo pisteessä , jos ja vain jos jokaiselle pisteen ympäristölle löydämme indeksin , jolla kaikilla .
  • Jos ja ovat topologisia avaruuksia, niin kuvaus on jatkuva pisteessä jos ja vain jos jokaiselle pisteen ympäristölle löydämme pisteen a ympäristön , jolle . (tai yhtäpitävästi )
  • Joukko on yhtenäinen, jos ja vain jos sitä ei voi lausua epätyhjien avoimien joukkojen erillisenä yhdisteenä.

Lähteet

Viitteet

  1. Lauri Myrberg: ”Avoin ja suljettu joukko”, Differentiaali- ja integraalilaskenta, osa 1, s. 30–31. Kirjayhtymä, 1977. ISBN 951-26-0936-3.
Tämä matematiikkaan liittyvä artikkeli on tynkä. Voit auttaa Wikipediaa laajentamalla artikkelia.