Ero sivun ”Aine” versioiden välillä

Wikipediasta
Siirry navigaatioon Siirry hakuun
[katsottu versio][katsottu versio]
Poistettu sisältö Lisätty sisältö
Hylättiin viimeisimmät 2 tekstimuutosta (käyttäjältä 195.95.208.18) ja palautettiin versio 13050515 käyttäjältä EmausBot
p Botti lisäsi luokkaan Seulonnan keskeiset artikkelit
Rivi 47: Rivi 47:


[[Luokka:Aine]]
[[Luokka:Aine]]
[[Luokka:Seulonnan keskeiset artikkelit]]

Versio 2. helmikuuta 2015 kello 13.03

Tämä artikkeli käsittelee fyysistä ainetta eli materiaa. Sanan muita merkityksiä on lueteltu täsmennyssivulla.
Taiteilijan näkemys aineen perusosan, atomin, rakenteesta.

Aine (lat. materia) määritellään usein substanssiksi, josta havaittavat fysikaaliset objektit ja maailmankaikkeus koostuvat. Valo, energian aiheuttamat ilmiöt ja voimat eivät ole ainetta. Havaittu aine koostuu atomeista, jotka koostuvat edelleen pienemmistä osasista.

Kaikki aine koostuu alkuaineista tai niiden muodostamista yhdisteistä. Kemiallisissa reaktioissa alkuaineet eivät muutu toisiksi alkuaineiksi, mutta ne sitoutuvat toisiinsa aikaisemmasta poikkeavalla tavalla siten, että syntyy uusia yhdisteitä tai yhdisteet hajoavat. Tällöin lisäksi aineiden yhteenlaskettu massa säilyy, mitä sanotaan aineen häviämättömyyden laiksi. Ydinreaktioissa alkuaineetkin muuttuvat toisiksi alkuaineiksi.

Maailmankaikkeudesta hieman alle 30 % on ainetta ja noin 70 % on pimeää energiaa.[1] Aineen katsotaan jääneen jäljelle symmetriarikon ansiosta alkuräjähdyksen jälkeisessä baryonigeneesissä noin 13,7 miljardia vuotta sitten.[2] Aine esiintyy maailmankaikkeudessa pääosin neljässä olomuodossa. Aineen vastakohta on antiaine.

Nykytieteen käsitys aineesta

Klassinen "aine" koostuu fermioneista, joita ovat kvarkit ja leptonit. Kvarkkeja tunnetaan kuusi lajia, joiden nimet ovat ylös, alas, huippu, pohja, outo ja lumo. Kvarkkeja ei esiinny vapaina, vaan ne ovat aina yhtyneinä joko kolmen kvarkin muodostamiksi hadroneiksi tai yhden kvarkin ja yhden antikvarkin muodostamiksi mesoneiksi.

Kaikki tavallinen aine muodostuu atomeista. Atomin ytimen muodostavat protonit ja neutronit, joista käytetään yhteisnimitystä nukleoni. Molemmat muodostuvat kolmesta kvarkista. Protoni koostuu kahdesta ylös-kvarkista ja yhdestä alas-kvarkista, neutroni sen sijaan yhdestä ylös- ja kahdesta alas-kvarkista. Koska ylös-kvarkin sähkövaraus on +2/3 alkeisvarausyksikköä e ja alas-kvarkin -1/3 e, on protonin varaus +1 e ja neutronilla ei ole varausta. Muita kvarkkeja ei tavallisessa aineessa esiinny, mutta esimerkiksi hiukkaskiihdyttimillä niitä on voitu tuottaa.

Atomin ydintä kiertävät elektronit, jotka kuuluvat leptoneihin. Elektronin sähkövaraus on -1 alkeisvarausyksikköä. Atomissa on normaalisti yhtä monta elektronia kuin sen ytimessä on protoniakin, joten se on sähköisesti neutraali. Jos elektronien lukumäärä poikkeaa protonien määrästä, on kyseessä sähköisesti varautunut ioni. Atomit yhdistyvät edelleen kemiallisilla sidoksilla molekyyleiksi ja nämä edelleen nesteiksi ja kiinteiksi aineiksi.

Elektronin ohella on olemassa muitakin leptoneja: myoni ja tau-hiukkanen sekä kolme lajia neutriinoja. Näitä esiintyy kuitenkin lähinnä vain kosmisessa säteilyssä.

Fermionien lisäksi on olemassa toinenkin alkeishiukkasryhmä: bosonit. Ne välittävät vuorovaikutuksia aineen perushiukkasten välillä. Bosoneja ovat mesonit, gluonit ja fotonit. Mesonit ja gluonit ovat vahvan vuorovaikutuksen sekä fotonit sähkömagneettisen vuorovaikutuksen välittäjähiukkasia. Heikkoa vuorovaikutusta välittää W-bosoni. Teorian edellyttämiä, mutta vielä löytymättömiä bosoneja ovat Higgsin hiukkanen sekä gravitoni. Higgsin hiukkasen on päätelty selittävän kaikkien alkeishiukkasten massan, gravitonin puolestaan olevan painovoimaa eli gravitaatiota välittävä hiukkanen.

Higgsin bosonia vastaava hiukkanen on löydetty CERNin LHC-hankkeessa 4.7.2012. [3][4]


Supersymmetriateoria

Kaikille hiukkasille oletetaan löytyvän antihiukkanen supersymmetriateorian perusteella siten, että jokaisella hiukkasella on vastaava antihiukkanen. Useat näistä on havaittu, ennen kaikkea antikvarkit ylös ja alas, sekä antielektroni eli positroni. Antiprotoni ja antineutroni ovat kolmen antikvarkin yhdistelmiä. Näin ollen on teoreettisesti mahdollista konstruoida esimerkiksi antivety, jonka atomissa olisi ytimenä antiprotoni ja sen ympärillä positroni.

Pimeä aine

Maailmankaikkeuden massasta oletetaan huomattavan osan olevan niin sanottua pimeää ainetta. Pimeää ainetta ei ole voitu suoranaisesti havaita, mutta sen olemassaolo on päätelty tähtitieteellisesti sen gravitaatiovaikutuksen avulla.

Pimeä energia

Pimeä energia on luonteeltaan tarkemmin tuntematon energian muoto, jonka tiedetään kiihdyttävän maailmankaikkeuden laajenemista. Merkitykseltään sen voidaan sanoa vastaavan Einsteinin yleisen suhteellisuusteorian varhaisimmissa versioissa esiintynyttä kosmologista vakiota. Myöhemmin Einstein tosin poisti kosmologisen vakion yhtälöistään, mutta uudempien tutkimusten perusteella se olisi niihin palautettava.

Lähteet

  1. Fred Adams: Elämää multiuniversumissa, s. 71. Like, 2002. ISBN 952-471-392-6.
  2. Fred Adams ja Greg Laughlin: Maailmankaikkeuden elämäkerta – Ikuisuuden fysiikkaa. Like, 1999. ISBN 952-471-018-8.
  3. Higgs boson-like particle discovery claimed at LHC BBC, viitattu 18.8.2012
  4. Cernin tutkijat: Higgsin hiukkasen löytyminen lähes varmaa Helsingin Sanomat, viitattu 18.8.2012

Kirjallisuutta

  • Karttunen, Hannu: Fysiikka. Tiedettä kaikille. Ursan julkaisuja 89. Helsingissä: Tähtitieteellinen yhdistys Ursa, 2006. ISBN 952-5329-32-1.
Tämä fysiikkaan liittyvä artikkeli on tynkä. Voit auttaa Wikipediaa laajentamalla artikkelia.