Ero sivun ”Hyperbolinen geometria” versioiden välillä

Wikipediasta
Siirry navigaatioon Siirry hakuun
[arvioimaton versio][arvioimaton versio]
Poistettu sisältö Lisätty sisältö
p Botti poisti 30 Wikidatan sivulle d:q209306 siirrettyä kielilinkkiä
Mixor2 (keskustelu | muokkaukset)
Ei muokkausyhteenvetoa
Rivi 8: Rivi 8:


Koska hyperbolisessa geometriassa voidaan suoran ulkopuolisen pisteen kautta piirtää useampi kyseisen suoran kanssa [[yhdensuuntaisuus|yhdensuuntainen]] suora, ei [[euklidinen geometria|euklidisen geometrian]] [[paralleeliaksiooma]] ole voimassa. Tästä seuraa, että monet eukidisessa geometriassa yhdensuuntaisille suorille tunnetut asiat eivät päde hyperbolisessa geometriassa. Muun muassa suorien ''m'' ja ''n'' ei täydy olla yhdensuuntaisia keskenään, vaikka ne olisivat molemmat yhdensuuntaisia suoran ''l'' kanssa. Lisäksi suorasta ''l'' vakioetäisyydellä olevat pisteet eivät muodosta suoraa hyperbolisessa geometriassa.
Koska hyperbolisessa geometriassa voidaan suoran ulkopuolisen pisteen kautta piirtää useampi kyseisen suoran kanssa [[yhdensuuntaisuus|yhdensuuntainen]] suora, ei [[euklidinen geometria|euklidisen geometrian]] [[paralleeliaksiooma]] ole voimassa. Tästä seuraa, että monet eukidisessa geometriassa yhdensuuntaisille suorille tunnetut asiat eivät päde hyperbolisessa geometriassa. Muun muassa suorien ''m'' ja ''n'' ei täydy olla yhdensuuntaisia keskenään, vaikka ne olisivat molemmat yhdensuuntaisia suoran ''l'' kanssa. Lisäksi suorasta ''l'' vakioetäisyydellä olevat pisteet eivät muodosta suoraa hyperbolisessa geometriassa.

==Kolmiot==
Hyperboliset etäisyydet voidaan mitata <math>R = \frac{1}{\sqrt{-K}}</math> , mikä on analoginen säde pallomaisessa geometriassa.Etäisyyden mitta voidaan todistaa [[Pythagoraan lause]]ella. Jos suorakulmaisessa kolmiossa ''a'' ja ''b'' ovat kantoja ja ''c'' hypotenuusa, niin hyperbolisessa etäisyyden mittauksessa:

:: <math>\cosh c=\cosh a\cosh b\,.</math>

''cosh'' funktio on [[hyperbolinen funktio]],minkä vastine on [[trigonometria]]ssa ''cos'' funktio.Kaikilla [[Trigonometrinen funktio|trigonometrisillä funktioilla]] on vastaavat funktiot hyperbolisessa ympäristössä.



==Historia==
==Historia==

Versio 18. huhtikuuta 2013 kello 20.13

Osa artikkelisarjaa
Geometria

Tasogeometria
Piste
Suora
Käyrä
Taso
Pinta
Pinta-ala
Pituus
Kulma
Trigonometria

Ympyrä
Ellipsi
Monikulmio
Kolmio
Nelikulmio
Suorakulmio
Neliö
Suunnikas
Neljäkäs
Puolisuunnikas

Avaruusgeometria
Tilavuus
Avaruuskappale
Pallo
Kartio
Lieriö
Särmiö
Suuntaissärmiö
Suorakulmainen särmiö
Säännöllinen monitahokas
Platonin kappale
Tetraedri
Heksaedri eli kuutio
Oktaedri
Dodekaedri
Ikosaedri
Keplerin–Poinsot'n kappale

Euklidinen geometria
Paralleeliaksiooma

Epäeuklidinen geometria
Hyperbolinen geometria
Elliptinen geometria

Analyyttinen geometria

Hyperbolinen geometria käsittelee kaksiulotteista, negatiivisesti kaarevaa pintaa. Pinta muistuttaa muodoltaan hieman satulaa, ja joskus puhutaankin tässä yhteydessä satulapinnasta. Toinen esimerkkipinta on torvi. Hyperbolisen geometrian "vastakohdan" voidaan monien ominaisuuksien puolesta ajatella olevan pallo- eli elliptisen geometrian, euklidisen geometrian jääden rajatapauksena näiden kahden väliin.

Hyperbolinen geometria eroaa perinteisestä, euklidisesta, ääretöntä, tasaista tasoa käsittelevästä geometriasta monin tavoin. Muun muassa kolmion kulmien summa on aina vähemmän kuin 180 astetta, ja suoralle voidaan yksittäisen pisteen läpi piirtää ääretön määrä sille yhdensuuntaisia suoria.

Yhdensuuntaiset suorat

Koska hyperbolisessa geometriassa voidaan suoran ulkopuolisen pisteen kautta piirtää useampi kyseisen suoran kanssa yhdensuuntainen suora, ei euklidisen geometrian paralleeliaksiooma ole voimassa. Tästä seuraa, että monet eukidisessa geometriassa yhdensuuntaisille suorille tunnetut asiat eivät päde hyperbolisessa geometriassa. Muun muassa suorien m ja n ei täydy olla yhdensuuntaisia keskenään, vaikka ne olisivat molemmat yhdensuuntaisia suoran l kanssa. Lisäksi suorasta l vakioetäisyydellä olevat pisteet eivät muodosta suoraa hyperbolisessa geometriassa.

Kolmiot

Hyperboliset etäisyydet voidaan mitata , mikä on analoginen säde pallomaisessa geometriassa.Etäisyyden mitta voidaan todistaa Pythagoraan lauseella. Jos suorakulmaisessa kolmiossa a ja b ovat kantoja ja c hypotenuusa, niin hyperbolisessa etäisyyden mittauksessa:

cosh funktio on hyperbolinen funktio,minkä vastine on trigonometriassa cos funktio.Kaikilla trigonometrisillä funktioilla on vastaavat funktiot hyperbolisessa ympäristössä.


Historia

Kahden tuhannen vuoden ajan monet matemaatikot, kuten Proklos, Ibn al-Haitham, Omar Khaijam, Nasir al-Din Tusi, Witelo, Gersonides, Alfons, ja myöhemmin Saccheri, John Wallis, Lambert ja Legendre yrittivät todistaa paralleeliaksioomaa. Koska heidän yrityksensä epäonnistuivat, alkoivat matemaatikot tutkia tilannetta, jossa paralleeliaksiooma ei ole voimassa. Aluksi Gauss, Bolyai ja Lobatševski kehittivät epäeuklidisen geometrian aksiomaattisesti, ilman analyyttisiä malleja. Perusteet hyperbolisen geometrian analyyttiselle tulkinnalle loivat Euler, Monge ja Gauss, ja vuonna 1837 Lobatševski ehdotti negatiivisesti kaarevaa pintaa malliksi hyperboliselle geometrialle.

Hyperbolisen geometrian malleja

Hyperbolisessa geometriassa on neljä yleisesti käytettyä mallia: Kleinin malli, Poincarén kiekkomalli, Poincarén puoli-taso –malli ja Hyperboloidimalli, joista kolme ensimmäistä ovat Beltramin kehittämiä, eivätkä Kleinin ja Poincarén, joiden mukaan mallit on nimetty.

Katso myös

Lähteet