Tämä on hyvä artikkeli.

Röntgentutkimus

Wikipediasta
Tämä on arkistoitu versio sivusta sellaisena, kuin se oli 24. kesäkuuta 2011 kello 17.37 käyttäjän Soppakanuuna (keskustelu | muokkaukset) muokkauksen jälkeen. Sivu saattaa erota merkittävästi tuoreimmasta versiosta.
Siirry navigaatioon Siirry hakuun

Hampaiden ortopantomografia-kuvaus Yhdysvaltain laivaston näyttelemänä.

Röntgenkuvaus (joissain yhteyksissä radiografia) tarkoittaa säteilyn käyttöä esineiden ja elävien eliöiden kuvantamiseksi. Menetelmä perustuu röntgensäteilyn absorptioon. Joskus myös gammasäteilyllä kuvattuja radiografisia tutkimuksia nimitetään röntgenkuvauksiksi, vaikka fysikaalisesti kyseessä ei ole sama asia. Röntgenkuva on kohteen vaimentaman säteilyn muodostama varjokuva.[1][2]

Röntgenkuvauksen periaatteen keksi saksalainen Wilhelm Röntgen.Röntgensäteet saivat poikkeuksellisen innokkaan vastaanoton niin tiedemiesten kuin maallikoiden keskuudessa. Uudestä säteilystä kehitettiin nopeasti lääketieteellisiä sovelluksia.[3]

Röntgenkuvaus jaotellaan lääketieteelliseen kuvantamiseen ja teolliseen radiografiaan.[4] Lääketieteellisiä tutkimuksia arvoidaan tehtävän maailmassa noin 5 miljardia tutkimusta vuodessa.[5] Lääketieteen haaraa, jossa diagnoosin tekeminen perustuu radiografiaan kutsutaan radiologiaksi.[6]

Röntgenkuvauksen periaate

Röntgenkuvaus perustuu sähkömagneettisen säteilyn kykyyn läpäistä eri tavalla raskaita ja kevyitä atomeita. Lääketieteellisessä kuvauksessa rasvakudos ja ilmapitoinen keuhkokudos läpäisevät säteitä hyvin ja ne näyttävät röntgenkuvissa tummilta, kun taas esimerkiksi luukudos absorboi (imee) paljon sähkömagneettista säteilyä eikä laske niitä läpi, jolloin luut näyttävät röntgenkuvissa vaaleilta.[7][1]

Röntgenkuvauksen historiaa

Röntgenkuvauksen varhaishistoria

Varhainen Crooken röntgenkuvausmenetelmä 1800-luvun lopulta.

Röntgenkuvauksen periaatteen keksi saksalainen Wilhelm Röntgen vuonna 1895. Hän keksi että löytämillään säteillä pystyi valottamaan filmin. Hän sai löydöstään maailman ensimmäisen Nobelin fysiikanpalkinnon vuonna 1901, mutta itse suhtautui löytämäänsä säteilyyn vaatimattomasti. Röntgenin löytö aiheutti pienen vallankumouksen fysiikan alalla ja useat tiedemiehet aloittivat sen tutkimisen. Se sai poikkeuksellisen innokkaan vastaanoton niin tiedemiesten kuin maallikoiden keskuudessa.[3]

Röntgenin keksintö omaksuttiin hämmästyttävän nopeasti lääketieteeseen. Röntgenin julkaistua säteilystä kertovan artikkelin ehti kulua vain alle kuukausi kun menetelmää käytettiin jo ensimmäistä kertaa Yhdysvalloissa. Eddie McCarthy niminen nuorukainen sai kunnian olla ensimmäinen potilas, jolla röntgensäteitä käytettiin diagnostiseen tarkoitukseen. McCarthy oli murtanut ranteensa luisteluonnettomuudessa järven jäällä.[8]

Keksijä Thomas Edison kiinnostui myös röntgensäteilystä luettuaan Wilhelm Röntgenin artikkelin. Thomas Edison keksi että scheeliitti fluerisoi röntgensäteilyä paljon kirkkaammin kuin Röntgenin käyttämä platinasyanidi Pt(CN)42-. Havaintonsa pohjalta Edison rakensi maailman ensimmäisen kaupallisen läpivalaisulaitteen, jossa kuitenkin katselijan silmät altistuivat suoralle säteilylle. Edison menetti melkein näkönsä työskennellessään ahkerasti läpivalaisun kanssa. Lisäksi hänen apulaisensa Clarence Dally sairastui säteilysairauteen ja myöhemmin syöpään oltuaan innokkaana koekaninina Edisonin läpivalaisuprojektissa. Kauhistunut Edison lopetti työnsä röntgensäteilyn kanssa näiden henkilökohtaisten menetyksien takia.[9]

Ensimmäisen röntgenavusteisen leikkausen suoritti John Hall-Edwards Isossa-Britanniassa vuonna 1896. Hall-Edwards oli varhaisia röntgensäteilyn tutkijoita. Hänen vasen kätensä jouduttiin amputoimaan tulehduksen takia, joka oli seurausta liiallisesta röntgensäteilystä. Tästä huolimatta hän toimi vielä 20 vuotta röntgenosaston päällikkönä Britaniassa.[10]

Marie Curie ajaa röntgenlaitteella varustettua autoa ensimmäisessä maailmansodassa.

Ensimmäinen maailmansota

Ensimmäisen maailmansodan sytyttyä Euroopassa vuonna 1914 röntgenlaitteiden kehitys nopeutui. Röntgenkuvauksen kehitystä ohjasi erityisesti tarve kehittää röntgenlaitteita, joita on helppo liikutella rintamalla ja sairaaloissa. Myös liikkuvien osien määrää pyrittiin vähentämään, jotta laitteet olisivat kestävempiä ja helpommin korjattavissa. Sota lisäsi myös laadullisen tarpeen lisäksi röntgenlaitteiden määrällistä tarvetta, jolloin röntgenlatteistoa alettiin valmistaa ensimmäistä kertaa massatuotannolla.[11]

Moderni röntgenkuvaus

Röntgenkuvauksen kehittyessä ensimmäisen maailmansodan jälkeen allalle alkoi kehittyä jo aiemmin kehitetyn läpivalaisun lisäksi muita erikoistuvia modaliteetteja eli tekniikoita. Näistä mainittakoon varjoainekuvaukset barium- tai jodivarjoaineen kanssa. Ensimmäisiä leikekuvauksia ja myöhemmin kolmiulotteisia kuvauksia tarjosi tomografiatekniikat. Tietokonetomografia kuvauksien avulla päästään nykyisin lähes patologisen näytteen tarkkuuteen joissain keuhkojen sairauksissa. Ruotsalaisen radiologin, Sven Ivar Seldingerin vuonna 1953 kuvaama katetriröntgenkuvaus erikoistui nykyiseksi angiografiaksi.[12]

1900 -luvun lopulla ja 2000 -luvun alussa suurimmat muutokset perinteisessä röntgenkuvauksessa ovat tapahtuneet ilmaisintekniikassa ja digitaalisen radiografian tietokoneiden ohjelmistoissa. Parannukset ovat mahdollistaneet entistä nopeammat kuvaukset, pienemmät potilasannokset ja paremman kuvanlaadun. Nykyisin on suurimmaksi osaksi siirrytty röntgenfilmien käytöstä digitaaliseen kuvantamiseen. Ensimmäinen filmitön järjestelmä oli kuvalevyjärjestelmä CR-kaseteille (Computed radiography). Järjestelmässä filmin sijasta kuva muodostuu uudelleenkäytettävälle kuvauslevylle, joka luetaan CR-luentakoneella optisesti. Tuorein menetelmä röntgenkuvauksessa on suoradigitaalinen järjestelmä (Direct radiography, DR). DR-järjestelmässä kuvalevyilmaisin siirtää kuvan suoraan tietokoneelle ihmissilmän katseltavaksi.[13][14]

Röntgentutkimuksien jako

Röntgenkuvausta käytetään niin lääketieteellisiin (radiologia) kuin teollisuuden tarpeisiin. Jos tutkittava kohde on elävä, niin sitä sitä pidetään lääketieteellisenä toimenpiteenä. Muut käyttötarkoitukset, esimerkiksi matkatavaroiden läpivalaisu lentokentillä, kuuluvat teollisen radiografian piiriin.[4]

Säteilyn käyttö lääketieteessä

Thorax eli keuhkokuva

Säteilyn käyttö terveydenhuollossa

Suomessa tehdään vuosittain noin 3,9 miljoonaa röntgentutkimusta ja lisäksi noin 1,3 miljoonaa tavanomaista hammaskuvausta ja lähes 200 000 hampaiden panoraamakuvausta. Maailmassa tehdään yhteensä arvioiden mukaan ainakin 5 miljardia röntgentutkimusta vuodessa. Molemmissa luvuissa on otettu huomioon kaikki säteilytutkimukset, ei pelkästään perinteiset röntgenkuvaukset. Eniten tehdään keuhkojen ja luuston röntgentutkimuksia. Hammaskuvia otetaan paljon, mutta annos potilasta kohden on pieni. Eniten säteilyä saadaan muista tutkimuksista kuin perinteisistä röntgenkuvauksista. Angiografiatutkimuksista ja erilaisista hoitotoimenpiteistä kuten tukkeutuneen verisuonen avauksesta voi koitua suuri annos potilaalle. Niistä aiheutuva annos voi olla jopa satoja millisievertejä tutkimusta kohti. Myös tietokonetomografiatutkimuksissa annos voi olla suuri.[15][5]

Röntgensäteilyn käyttö lääketieteellisessä diagnostiikassa perustuu röntgensäteilyn kykyyn läpäistä kehon kudoksia, mutta myös siihen, että säteily vaimenee kudoksissa niiden alkuainekoostumuksesta ja tiheydestä riippuvalla tavalla. Lääketieteelliseen röntgenlaitteistoon kuuluu röntgengeneraattorin ja -putken lisäksi telineet, joiden avulla röntgenputki ja kuvareseptori pidetään paikallaan ja potilas saadaan aseteltua tutkimusta varten. Laitteiston telineet voivat olla erilliset tai ne voivat muodostaa kiinteän kokonaisuuden.[1] Isotooppikuvantamisessa ei tuoteta säteilyä potilaan ulkopuolelta tavallisesta röntgenkuvauksesta poiketen, vaan potilaaseen viedään radioaktiivisia isotooppeja, joita kuvataan gammakameralla. Kuvauksesta riippuen radiolääke annetaan joko suonensisäisesti, hengitysteitse tai suun kautta nautittuna.[16]

Eläinröntgenkuvaus

Koiran vasemmassa (röntgenkuvassa oikealla puolella) lonkkaluussa on lonkkaproteesi.

Röntgenkuvaus on eläinlääketieteen diagnostiikan yleisemmin käytettyjä menetelmiä. Röntgenkuvaus on halpa tapa saada eläimestä diagnostista informaatiota ja lisäksi menetelmä ei vaadi leikkausta tai muuta kajoamista eläimen sisälle. Vaikka röntgentutkimus on kivuton niin silti usein eläin täytyy rauhoittaa tai nukuttaa kuvauksen onnistumiseksi.[17]

Eläinröntgenkuvaamiseen on noin 200 toimipaikkaa Suomessa. Niissä tehdään vuosittain yli 100 000 eläinröntgentutkimusta. Röntgenkuvan onnistumisen kannalta on tärkeää, että eläin pidetään tutkimuksen aikana liikkumattomana. Kiinnipitäjinä toimivat yleensä henkilökunta tai eläimen saattajat. Uusintakuvauksien tarvetta voidaan vähentää rauhoittamalla eläin tutkimuksen ajaksi. Vaikeiden tutkimusolosuhteiden takia säteilyturvallisuus ei aina toteudu eläinröntgenissä. Tämän vuoksi on tärkeää kiinnittää huomiota henkilökunnan, kiinnipitäjien ja muiden henkilöiden säteilyturvallisuudesta ja käyttää säteilysuojaimia.[18]

Teollisuudessa rikkomattomaan aineenkoetukseen käytettävä röntgenlaite.

Säteilyn käyttö teollisuudessa

Teollisuudessa säteilyä hyödynnetään esimerkiksi materiaalien laadunvalvonnassa, säiliöiden pinnankorkeuden mittauksessa, paperin paksuuden ja koostumuksen seurannassa. Teollisuusprosessien seurantaan käytettävät laitteet koostuvat radioaktiivista ainetta sisältävästä säteilylähteestä ja säteilyä mittaavasta ilmaisimesta.[19]

Teollisuusradiografia on ainetta rikkomaton testausmenetelmä, jolla tarkastetaan mm. metallirakenteiden ja hitsaussaumojen virheettömyyttä. Periaate on sama kuin lääketieteellisessä kuvauksessa: Säteily läpäisee tutkittavan kappaleen ja valottaa sen taakse asetetun röntgenfilmin tai ilmaisimen. Radiografialaitteissa käytetään säteilyn synnyttämiseen joko suuritehoista röntgenlaitetta tai paksuimmille materiaaleille gammalähdettä tai lineaarikiihdytintä.[19]

Säteilytyöntekijöistä huonoimman turvallisuuskulttuurin vaikuttaisi omaavan säteilyn käyttäjät teollisuusradiografiassa. Syyksi on esitetty suhteellisesti pienempää valvontaa säteilyn käytölle, jos verrataan valvontaa ydinvoimalassa tai sairaalassa työskenteleviin säteilytyöntekijöihin. Myös usein teollisuudessa käytettävien gammalähteiden käyttöä on osaltaan epäilty turvallisuuskulttuurin heikentäjäksi teollisuusradiografiassa.[20]

Röntgenkuvauslaitteisto

Natiivi-, eli tavallisen varjoaineettoman projektioröntgenkuvauksen laitteisto koostuu säteilyn lähteen laitteistosta ja röntgenfilmistä tai ilmaisimesta. Röntgenfilmin kehitystä varten tarvitaan lisäksi pimiö ja digitaalisessa kuvantamisessa tarvitaan digitaalinen kuvankehitys- ja tarkastelulaitteisto. Säteilyn lähteenä röntgentutkimuksissa on tavallisesti röntgenputki. Teollisuudessa lineaarikiihdyttimellä tai gammalähteellä tehtyjä tutkimuksia kutsutaan joskus virheellisesti röntgentutkimuksiksi.[21][19][2]

Säteilyn tuottaminen

Sivuikkunallisen röntgenputken rakenne.

Sivuikkunalliset röntgenputket (side window tube) ovat nykyisin kaikkein yleisempiä röntgenputkia röntgentutkimuksissa. Sivuikkunallisen röntgenputken rakenne koostuu hehkulangasta, josta elektroneja sinkoutuu röntgenputkessa vallitsevassa tyhjiössä anodilautaselle. Putkessa syntyvä röntgensäteily muodostuu suurimmaksi osaksi elektronien jarrutussäteilynä ja anodilautasen materiaalin karakterisena röntgensäteilynä (Characteristic radiation). Anodilautanen on sivuikkunallisessa röntgenputkessa vinossa. Röntgensäteily poistuu anodilautasen kulman ansiosta suurimmaksi osaksi juuri putken kyljessä olevasta ikkunasta.[22][23]

Ilmaisintekniikka

Röntgenkuvauksessa tarvitaan säteilyn lähteen lisäksi jokin laite, johon kuva muodostuu ihmissilmän katseltavaksi. Röntgenkuvia on kuvattu hyvin pian röntgensäteilyn keksimiseen jälkeen filmeille ja menetelmä on edelleen käytössä maailmalla. Menetelmässä säteily osittain absorboituu potilaaseen ja vain läpitunkeutunut säteily valottaa filmin. Sen jälkeen röntgenhoitaja tai muu säteilytyöntekijä kehittää filmin kemiallisesti ja säteilyn muodostama kuva ilmestyy filmille.[21]

Nykyään röntgenkuvaus tapahtuu useinmiten digitaalisesti. Kohteen läpäissyt röntgensäteily mitataan erilaisilla ilmaisimilla ja muutetaan sähköisiksi informaatioksi. Näitä digitaalisia tuloksia voidaan käsitellä ja muunnella tietokoneilla ja lukea kuvaruudulta sekä tarvittaessa tulostaa filmille. Pian koko röntgenfilmi on häviämässä, sillä monin paikoin siirrytään kuvien katseluun tietokoneen ruudulta.[24]

Röntgentutkimuksien haittavaikutukset

Haittavaikutuksien todennäköisyys

Säteilyn haittavaikutusten todennäköisyys kasvaa säderasituksen kasvaessa. Potilaan ikä vaikuttaa myös riskiin. Alle 35 vuotiailla on suurempi elinikäinen riski sairastua syöpään röntgentutkimuksesta saamastaan säteilystä. Käytännösssä kuitenkin todennäköisyys sairastua syöpäsairauksiin röntgenkuvantamisen takia on pieni. Vuosittain ihminen saa keksimäärin 1,7 millisievertin efektiivisen annoksen säteilyä, josta suurin osa on taustasäteilyä. Määrä havaittavaan todennäköisyyteen syöpään sairastumiseen on noin 100 mSv.[25][26][27][28]

Tutkimuskohtaisia sädeannoksia terveydenhuollossa

Taulukossa esitetyt tiedot vastaavat STUKin selvityksen mukaan keskimääräistä suomalaisen säteilyaltistusta. Sädeannoksissa voi olla huomattavia paikkakohtaisia eroja. Yli 30 prosentin vaihtelu ei ole harvinaista. Potilaan paksuus vaikuttaa huomattavasti kuvauksessa käytettävään annokseen. Hoikalla potilaalla pienempi sädeannos riittää diagnostisen kuvanlaadun saavuttamiseen. PA-suunta tarkoittaa kuvausta röntgenputki potilaan selän puolella.[25][26]

Röntgentutkimus[25][26] Efektiivinen annos (mSv) Annosta vastaava määrä PA-suunnan keuhkokuvia Annosta vastaava aika luonnonsäteilyyn verrattuna
Tavanomainen hammasröntgenkuvaus 0,01 0,3 1 päivä
Raaja, esim polvi 0,01 0,3 1 päivä
Nenän sivuontelot 0,03 1 4 päivää
Keuhko (PA) 0,03 1 4 päivää
Keuhko (PA- ja sivukuva) 0,1 3 12 päivää
Kallo (PA- ja sivukuva) 0,1 3 12 päivää
Kaularanka 0,2 7 24 päivää
Mammografia 0,3 10 4 kuukautta
Rintaranka 1 30 4 kuukautta
Lantio 1 30 4 kuukautta
Lanneranka 2 70 8 kuukautta
Vatsan kuvaus 2 70 8 kuukautta

Lähteet

  1. a b c Markku Tapiovaara, Olavi Pukkila, Asko Miettinen: ”1”, Röntgensäteily diagnostiikassa, s. 13-40. Hämeenlinna: Karisto Oy:n kirjapaino, 2004. Suomi
  2. a b Grzegorz Jezierski: Utilization of X-rays Collection of X-ray lamps. 2011. Grzegorz Jezierski. Viitattu 15.6.2011. (englanniksi)
  3. a b Helge Kragh: Kvanttisukupolvet, s. 50. Terra Cognita, 2002. ISBN 952-5202-53-4.
  4. a b STUK: Säteilyn käyttökohteita 27.4.2009. STUK. Viitattu 31.5.2011.
  5. a b Roobottom C, Mitchell G & Morgan-Hughes G: Radiation-reduction strategies in cardiac computed tomographic angiography 2010. Clinical Radiology. Viitattu 5.6.2011.
  6. RSNA & ACR: Professions: Understanding Radiology EH.Net Encyclopedia. 2011. Radiological Society of North America, Inc. (RSNA). Viitattu 15.6.2011. (englanniksi)
  7. Termit: radiografia Tohtori.fi. Viitattu 12.6.2011.
  8. Spiegel, Peter K (1995). "The first clinical X-ray made in America—100 years". American Journal of Roentgenology 164 (1): 241–243. Leesburg, VA: American Roentgen Ray Society. ISSN 1546-3141. 
  9. Edison fears the hidden perils of the x-rays.. New York World, 3.8.1903, 1. vsk. Durham: Duke University Rare Book. (englanniksi)
  10. Birmingham City Council: Major John Hall-Edwards Birmingham City Council. Viitattu 2.6.2011.
  11. Miller, A & McClurken, J: The Military and the X-Ray 2003. Mary Washington College. Viitattu 5.6.2011.
  12. Daniel Nolan: 100 years of X rays 11.3.1995. British Medical Journal. Viitattu 5.6.2011.
  13. Deprins E: Computed radiography in NDT applications (pdf) e-Journal of NDT. 2004. Belgia: GE Inspection Tecnologies. Viitattu 17.6.2011. (englanniksi)
  14. Ramesh, J: Digital applications of radiography (pdf) e-Journal of NDT. 2005. Qatar: Qatargas Operation Company. Viitattu 17.6.2011. (englanniksi)
  15. STUK: Röntgentutkimukset 8.9.2010. STUK. Viitattu 17.1.2011.
  16. SNM: What is Nucreal Medicine? SNM. Viitattu 31.5.2011.
  17. The Merck Veterinary Manual: Radiography 7.4.2009. Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc.. Viitattu 17.6.2011. (englanniksi)
  18. STUK: Eläinröntgentutkimukset 7.4.2009. STUK. Viitattu 27.2.2011.
  19. a b c STUK: Säteilyn käyttö teollisuudessa 27.4.2009. STUK. Viitattu 17.1.2011. Suomi
  20. Bijun H- Ym.: Safety report series n. 13 1996. Radiation protection and safety in industrial radiography. Viitattu 5.6.2011. Suomi
  21. a b What is Radiology? News Medical. Viitattu 5.6.2011.
  22. Grzegorz Jezierski: Classification of X-ray tubes Collection of X-ray lamps. 2011. Grzegorz Jezierski. Viitattu 15.6.2011. (englanniksi)
  23. Grzegorz Jezierski: X-ray radiation emission sources Collection of X-ray lamps. 2011. Grzegorz Jezierski. Viitattu 15.6.2011. (englanniksi)
  24. Mustajoki P & Kaukua J: Röntgenkuvat Terveyskirjasto. 2011. Kustannus Oy Duodecim. Viitattu 17.6.2011.
  25. a b c Säteilytutkimusen muistikortti. Virhe: Lehtiviitemallineessa julkaisuparametri on pakollinen. [ Ohje ], 2011, nro 2, s. 1-2. Oulu: Pohjois-Pohjanmaan Sairaanhoitopiirin kuntayhtymä.
  26. a b c STUK: Röntgentutkimuksien säteilyannokset Säteilyn käyttö terveydenhuollossa. 8.10.2009. STUK. Viitattu 20.6.2011.
  27. Radiation Exposure in X-ray and CT Examinations radiologyinfo.org. Viitattu 20.6.2011. (englanniksi)
  28. Radiation 28. toukokuuta 2011. rcn.com. Viitattu 20.6.2011. (englanniksi)

Aiheesta muualla