QR-hajotelma

Wikipedia
Loikkaa: valikkoon, hakuun

QR-hajotelma on eräs matriisihajotelma, jolla siis pyritään ilmaisemaan annettu matriisi jollakin tavoin yksinkertaisempien matriisien tulona. QR-hajotelma voidaan muodostaa mille tahansa matriisille. Kompleksikertoimisen m \times n-matriisin A QR-hajotelma on tulo

A=QR\,,

missä Q on m \times m unitaarimatriisi ja R on m \times n yläkolmiomatriisi. Erityisesti reaalikertoimisen matriisin A tapauksessa Q on ortogonaalimatriisi. Koska kahden kolmiomatriisin tulo on myös kolmiomatriisi, QR-hajotelma voi sisältää myös useita yläkolmiomatriiseja, jolloin

A= QR_1R_2R_3...\,

Hajotelma voidaan teoreettisesti perustaa Gramin–Schmidtin ortonormeeraukseen, mutta käytännössä se muodostetaan kertomalla vasemmalta joko Householderin peilausmatriiseilla tai Givensin rotaatiomatriiseilla.

QR-hajotelma on erittäin käyttökelpoinen työkalu lineaariavaruuksien projektioiden käsittelyssä ja sitä käytetään ylsisesti myös matriisien numeerisessa käsittelyssä. QR-hajotelmasta voidaan päätellä matriisin rangi eli kuva-avaruuden dimensio ja hajotelman matriisista Q löytyy myös kuva-avaruuden kanta ortonormeerattuna.

Katso myös[muokkaa | muokkaa wikitekstiä]

Tämä matematiikkaan liittyvä artikkeli on tynkä. Voit auttaa Wikipediaa laajentamalla artikkelia.