Pieni modulaarinen ydinreaktori

Kohteesta Wikipedia
Siirry navigaatioon Siirry hakuun

Pieni modulaarinen ydinreaktori on sähköteholtaan alle 300 megawatin reaktori, joka voidaan rakentaa tehtaassa lähes valmiiksi ja kuljettaa kokonaisena moduulina sijoituspaikalle. Siitä käytetään lyhennettä SMR (small modular reactor). Tehdasvalmistuksella tavoitellaan halvempia rakentamiskustannuksia ja lyhyempää rakennusaikaa. Sähkön lisäksi SMR:llä voitaisiin tuottaa kaukolämpöä, vetyä ja prosessilämpöä teollisuudelle sekä poistaa merivedestä suolaa ja tuottaa juomavettä. [1][2]

SMR-reaktorikonsepteja on useita erilaisia. Ensimmäisiä prototyyppejä on valmistumassa 2018–2019 Argentiinaan, Kiinaan ja Venäjälle [3]. Vuoden 2017 lopussa Helsingissä, Espoossa, Kirkkonummella ja Nurmijärvellä tehtiin valtuustoaloitteet, joissa vaadittiin selvitystä sähkön ja kaukolämmön tuotannosta paikallisesti SMR:llä fossiilisten polttoaineiden korvaamiseksi [4].

Pienten reaktorien mahdollisia etuja[muokkaa | muokkaa wikitekstiä]

Pieniä modulaarisia reaktoreita voitaisiin rakentaa sarjatuotantona tehtaissa ja kuljettaa työmaalle asennusvalmiina. Sarjatuotanto voisi alentaa rakennuskustannuksia ja nopeuttaa rakentamista. [2]

Suuret, yli tuhannen megawatin ydinvoimalat maksavat 8–10 miljardia euroa. Pienreaktorin hinta voisi olla noin miljardin. Siten taloudelliset riskit sijoittajille olisivat paljon pienemmät ja rahoituksen hankkiminen helpompaa. Samalle laitospaikalle voitaisiin rakentaa monta samanlaista pientä reaktoria yksi kerrallaan. Ensimmäisten reaktorien tuotoilla voitaisiin rahoittaa seuraavien reaktorien rakentamista. [2]

Monella teollisuuden alalla tarvitaan useiden satojen asteiden lämpötiloja, jotka tuotetaan yleensä fossiilisilla polttoaineilla. Osa SMR-konsepteista toimii niin korkeassa lämpötilassa, että niiden tuottamalla lämmöllä voitaisiin korvata fossiilisia polttoaineita prosessilämmön tuotannossa. Korkean lämpötilan reaktoreilla voitaisiin tuottaa myös vetyä. Osa SMR-konsepteista taas on suunniteltu tuottamaan pelkkää kaukolämpöä. Tällainen reaktori voi toimia matalassa lämpötilassa ja paineessa, mikä voisi alentaa sen rakentamiskustannuksia ja parantaa turvallisuutta. [2][5]

Kaikki ydinreaktorit tuottavat vielä ketjureaktion pysäyttämisen jälkeen jälkilämpöä, joka täytyy poistaa reaktorista, jotta polttoaine ei pääse ylikuumenemaan. Suurissa reaktoreissa jälkilämmön poisto hoidetaan yleensä sähköllä toimivilla jäähdytysvesipumpuilla. Pienessä reaktorissa jälkilämpöteho on pienempi, joten niihin on helpompi suunnitella passiivisia jäähdytysjärjestelmiä, joilla jälkilämpö saadaan poistettua reaktorista, vaikka sähkövirtaa ei olisi käytössä. Näin SMR:t voidaan ainakin teoriassa suunnitella yksinkertaisemmiksi ja turvallisemmiksi kuin suuret reaktorit. Lisäksi pienessä reaktorissa on vähemmän radioaktiivisia aineita kuin suuressa. Sen takia mahdollisessa onnettomuustilanteessa päästöt ympäristöön voisivat jäädä pienemmiksi. [1][6]

Reaktorien suojaamiseksi ulkoisilta uhilta, kuten lentokoneen törmäykseltä, on suunniteltu niiden sijoittamista maan alle. Pienet reaktorit tarvitsevat pienemmän suojarakennuksen, joten niitä voi olla helpompi rakentaa maan alle kuin suuria reaktoreita. [1]

Jos SMR:t pystytään suunnittelemaan turvallisemmiksi kuin suuret reaktorit, niitä voitaisiin rakentaa lähemmäksi suuria kaupunkeja. Sijoitus lähelle kaupunkia helpottaisi kaukolämmön tuotantoa ydinvoimalla, koska tarvittaisiin lyhyemmät putket lämmön siirtämiseksi kuluttajille. Pienten voimaloiden yksi etu on myös niiden soveltuvuus heikkoihin sähköverkkoihin esimerkiksi kehitysmaissa tai syrjäisillä alueilla. [1]

Käyttöiän lopussa voimalaitos täytyy purkaa. Pienen modulaarisen laitoksen purkaminen voi olla helpompaa ja halvempaa kuin suuren laitoksen. [1]

Pienten reaktorien haasteita[muokkaa | muokkaa wikitekstiä]

SMR:iä ei ole vielä kaupallisesti saatavilla. Sen takia ei ole varmaa, pystytäänkö niitä rakentamaan halvemmalla kuin suuria reaktoreita. Suuret reaktorit hyötyvät ns. suuruuden ekonomiasta. SMR:t pyrkivät korvaamaan sen sarjatuotannon eduilla. Sarjatuotantoa varten samanlaisia reaktoreita pitäisi kuitenkin rakentaa yhdessä tehtaassa useita kymmeniä. On epävarmaa, löytyykö maailmasta tarpeeksi tilaajia millekään SMR-reaktorityypille. [4][2]

Ydinvoimaloiden turvallisuusvaatimukset on kirjoitettu perinteisille suurille reaktoreille. Nykyiset turvallisuusvaatimukset eivät välttämättä suoraan sovellu SMR:lle. Samoin lupahakemusten käsittelyprosessi on suunniteltu reaktoreille, joita rakennetaan yksi kerrallaan, eikä se välttämättä sovellu sarjatuotantona rakennettaville reaktoreille. [5][6]

Kaukolämmön tuotantoa varten reaktorit pitäisi rakentaa lähelle kaupunkeja. Tämä voi olla vaikeaa poliittisen hyväksyttävyyden kannalta, vaikka pystyttäisiinkin todistamaan suuria reaktoreita parempi turvallisuustaso. [6] Pelkkää kaukolämpöä tuottava reaktori kannattaisi mitoittaa niin, että se voisi toimia täydellä teholla myös kesällä, kun kaukolämmön kulutus on vähäisempää. Toinen vaihtoehto olisi kesällä tuotetun lämmön varastointi talvea varten. Reaktorin pysäyttäminen kesäksi kasvattaisi kustannuksia. [7]

SMR:t tuottavat ydinjätettä suunnilleen saman verran kuin nykyiset suuret reaktorit suhteessa tuotetun energian määrään. Siten ydinjätteen loppusijoitus on haaste pienille reaktoreille samalla tavalla kuin suurillekin. [2]

SMR-reaktorikonsepteja[muokkaa | muokkaa wikitekstiä]

CAREM[muokkaa | muokkaa wikitekstiä]

CAREM-reaktori on sähköteholtaan 27 megawatin SMR, joka on rakenteilla Argentiinassa. Reaktoriin aiotaan ladata polttoainetta ensimmäisen kerran vuonna 2018. CAREM käyttää jäähdytteenä tavallista vettä, mutta siinä ei ole erillistä primääripiiriä, vaan höyrystimet ja paineistin ovat reaktorin paineastian sisällä. Tämän ansiosta jäähdytysvesivuoto on epätodennäköisempi kuin perinteisissä suurissa reaktoreissa. Reaktorin turvallisuusjärjestelmät perustuvat kokonaan passiivisiin ratkaisuihin. [1]

Kuulakekoreaktori HTR-PM[muokkaa | muokkaa wikitekstiä]

Kuulakekoreaktori

HTR-PM on kuulakekoreaktori, joka käyttää jäähdytteenä heliumia ja neutronien hidastimena grafiittia. Reaktori toimii korkeassa lämpötilassa. Helium-jäähdyte kuumenee 750 °C:een ja sekundääripiirin höyry 566 °C:een. Korkean lämpötilan ansiosta voidaan saavuttaa 40 prosentin hyötysuhde. Grafiittikuulien sisällä oleva polttoaine kestää korkeampia lämpötiloja kuin perinteisten reaktorien zirkonium-suojakuoressa oleva polttoaine. Tämän on tarkoitus parantaa turvallisuutta. Kiinassa on rakenteilla kaksi HTR-PM-reaktoria, jotka pyörittävät yhteistä turbiinia. Laitos tuottaa sähköä yhteensä 210 megawattia. Tavoitteena on käynnistää sähköntuotanto vuonna 2018. [3]

Kelluva ydinvoimala KLT-40S[muokkaa | muokkaa wikitekstiä]

KLT-40S on venäläinen SMR, jonka sähköteho on 35 megawattia. Kelluva ydinvoimala Akademik Lomonosov sisältää kaksi KLT-40S-reaktoria. Koko laitos rakennetaan telakalla ja hinataan sijoituspaikalle Siperiaan. Sen on tarkoitus käynnistyä vuonna 2019. Venäjä hakee SMR:stä energiaratkaisua syrjäisiin kohteisiin esimerkiksi Siperiassa tai öljynporauslautoilla. KLT-40S käyttää jäähdytteenä tavallista vettä. Siinä on sekä aktiivisia että passiivisia turvallisuusjärjestelmiä. [1][5][8]

NuScale[muokkaa | muokkaa wikitekstiä]

NuScale-reaktori

NuScale on Yhdysvalloissa kehitetty vesijäähdytteinen SMR. Yksi NuScale-moduuli tuottaisi 50 megawattia sähköä. Tällaisia moduuleja voidaan asentaa enintään 12 kappaletta samaan rakennukseen. Samaan tapaan kuin CAREM-reaktorissa, NuScalessakaan ei ole erillistä primääripiiriä, vaan höyrystimet ja paineistin ovat reaktorin paineastian sisällä. Reaktorin turvallisuusjärjestelmät perustuvat kokonaan passiivisiin ratkaisuihin. NuScale jätti lupahakemuksen Yhdysvaltain ydinturvallisuusviranomaiselle tammikuussa 2017. Ensimmäisen reaktorin rakentaminen voisi alkaa vuonna 2020. [3]

SMART[muokkaa | muokkaa wikitekstiä]

SMART (System-integrated Modular Advanced Reactor) on korealaisten suunnittelema, sähköteholtaan 100 megawatin reaktori. Samaan tapaan kuin CAREM- ja NuScale-reaktoreissa, SMARTissakaan ei ole erillistä primääripiiriä, vaan höyrystimet ja paineistin ovat reaktorin paineastian sisällä. Reaktorin turvallisuusjärjestelmät perustuvat passiivisiin ratkaisuihin. Etelä-Korean ydinturvallisuusviranomainen hyväksyi SMART-reaktorin suunnitelmat vuonna 2012, mutta yhtään reaktoria ei ole rakennettu. [3]

Lähteet[muokkaa | muokkaa wikitekstiä]

  1. a b c d e f g Karjomaa, Anssi: Pienet modulaariset ydinreaktorit Kandidaatintyö. 15.5.2016. Lappeenrannan teknillinen yliopisto. Viitattu 21.11.2018.
  2. a b c d e f Ydinvoimalan voi pian koota rekkaan mahtuvista moduuleista – Pienreaktorit mullistavat ydinvoimabisnestä Yle Uutiset. 28.9.2017. Viitattu 20.3.2018.
  3. a b c d Small Nuclear Power Reactors 2018. World Nuclear Association. Viitattu 20.3.2018.
  4. a b Haave omasta pienestä ydinvoimalasta villitsee kuntia – vaatisi ydinenergialakien perusteellisen mylläyksen Tekniikka & Talous. 22.12.2017. Viitattu 20.3.2018.
  5. a b c Helsingille halutaan oma pieni ydinvoimala – muutamalla pikkureaktorilla voisi lämmittää kaupungin Helsingin Sanomat. 13.2.2018. Viitattu 20.3.2018.
  6. a b c Söderholm, Kristiina: Licensing Model Development for Small Modular Reactors (SMRs) - Focusing on the Finnish Regulatory Framework Väitöskirja. 27.9.2013. Lappeenrannan Teknillinen Yliopisto. Viitattu 21.11.2018.
  7. SMR heat supply sales hinge on storage, power switching efficiency Nuclear Energy Insider. 4.4.2018. Viitattu 9.4.2018. (englanniksi)
  8. Russia's floating power plant meets construction standards World Nuclear News. 11.1.2018. Viitattu 20.3.2018.