Fermat’n luku

Kohteesta Wikipedia
(Ohjattu sivulta Fermat'n alkuluku)
Loikkaa: valikkoon, hakuun

Fermat’n luku on luku muotoa , missä n on ei-negatiivinen kokonaisluku. Ensimmäiset Fermat’n luvut ovat:[1]

F0 = 21 + 1 = 3
F1 = 22 + 1 = 5
F2 = 24 + 1 = 17
F3 = 28 + 1 = 257
F4 = 216 + 1 = 65 537
F5 = 232 + 1 = 4 294 967 297

Näistä luvut 3, 5, 17, 257 ja 65 537 ovat alkulukuja, mutta ei tiedetä, onko Fermat'n luku alkuluku millään arvolla, kun . Fermat'n luvut liittyvät läheisesti säännöllisten monikulmioiden konstruoimiseen: Gauss todisti, että säännöllinen monikulmio on mahdollista piirtää harpilla ja viivoittimella jos ja vain jos monikulmion kulmien lukumäärä on muotoa , missä ovat erisuuria Fermat'n alkulukuja.

Fermat'n luvut on nimetty harrastelijamatemaatikko Pierre de Fermat’n (1601-1665) mukaan. Tämä itse otaksui, että kaikki Fermat'n luvut olisivat alkulukuja. Otaksuman kumosi Leonhardt Euler vuonna 1732 osoittamalla, että . Myöhemmin suuremmillekin Fermat'n luvuille on löydetty alkutekijöitä ja moni lukuteoreetikko uskookin, että muita kuin Fermat'n tuntemia Fermat'n alkulukuja ei merkittävissä määrin ole olemassa.

Pépinin testillä voidaan selvittää annetusta Fermat’n luvusta, onko se alkuluku.

Lähteet[muokkaa | muokkaa wikitekstiä]

  1. Fermat Number from Wolfram MathWorld Wolfram Mathworld. Viitattu 6.9.2015.

Aiheesta muualla[muokkaa | muokkaa wikitekstiä]

Tämä matematiikkaan liittyvä artikkeli on tynkä. Voit auttaa Wikipediaa laajentamalla artikkelia.