Eulerin–Mascheronin vakio

Wikipedia
Loikkaa: valikkoon, hakuun

Eulerin–Mascheronin vakio on matemaattinen vakio, jota käytetään pääosin lukuteoriassa. Se määritellään harmonisen sarjan ja luonnollisen logaritmin erotuksen raja-arvona:

\gamma = \lim_{n \rightarrow \infty } \left[ \left( 
\sum_{k=1}^n \frac{1}{k} \right) - \ln n \right]=\int_1^\infty\left({1\over\lfloor x\rfloor}-{1\over x}\right)\,dx

Sitä merkitään yleensä pienellä kreikkalaisella kirjaimella γ (gamma), ja sen likiarvo 20 desimaalin tarkkuudella on 0,57721566490153286061. Ei tiedetä, onko γ rationaali- vai irrationaaliluku. Vakiota kutsutaan myös joskus Eulerin vakioksi, mutta sitä ei pidä sekoittaa e:n, joka tunnetaan paremmin Neperin lukuna, kanssa.

Eulerin–Mascheronin vakio esiintyy muun muassa gammafunktion tulokaavassa, luonnollisen logaritmin Laplacen muunnoksessa, Eulerin φ-funktion epäyhtälössä ja osana Meisselin–Mertensin vakiota.

Historiaa[muokkaa | muokkaa wikitekstiä]

Eulerin–Mascheronin vakion määritteli ensimmäisenä sveitsiläinen matemaatikko Leonhard Euler paperissaan De Progressionibus harmonicis observationes vuonna 1735. Euler käytti vakiolle merkintöjä C ja O ja laski sen arvon viiden desimaalin tarkkuudella. Vuonna 1781 hän oli laskenut vakion 15 desimaalin tarkkuudella.

Vuonna 1790 italialainen matemaatikko Lorenzo Mascheroni esitti vakiolle merkinnän A ja esitti sen arvon 31 desimaalin tarkkuudella, tosin 20.–22. desimaalit osoittautuivat virheellisiksi. Mascheroni ei koskaan käyttänyt merkintää γ. Vakiolla on sittemmin ollut yhteyksiä gammafunktioon.

Joulukuussa 2006 opiskelija Alexander J. Yee laski Eulerin–Mascheronin vakion 116 580 040 desimaalin tarkkuudella.[1]

Integraaleja[muokkaa | muokkaa wikitekstiä]

\begin{align}\gamma &= - \int_0^\infty { e^{-x} \ln x }\,dx = -4\int_0^\infty { e^{-x^2} x \ln x }\,dx\\
 &= -\int_0^1 \ln\ln\left (\frac{1}{x}\right) dx \\
 &= \int_0^\infty \left (\frac1{e^x-1}-\frac1{xe^x} \right)dx = \int_0^1\left(\frac 1{\ln x} + \frac 1{1-x}\right)dx\\
 &= \int_0^\infty \left (\frac1{1+x^k}-e^{-x} \right)\frac{dx}{x},\quad k>0\\
 &= \int_0^\infty \left(\frac1{kx+1} - e^{-kx}\right)\frac{\mathrm{d}x}{x},\quad k>0\\
 &= \int_0^{\infty}\frac{\ln(1+x)}{\ln^2 x + \pi^2}\cdot\frac{dx}{x^2}\\
 &= \frac{1}{2} + 2\int_0^\infty \frac{\sin(\arctan x)}{(e^{2\pi x} - 1)\sqrt{1 + x^2}} \mathrm{d}x= \int_0^1 H_{x} dx = -\int_0^\infty \left (\frac{\ln x}{e^x} \right)dx  \end{align}.

Hieman monimutkaisempia integraaleja:

 \int_0^\infty { e^{-x^2} \ln x }\,dx = -\tfrac14(\gamma+2 \ln 2) \sqrt{\pi}
 \int_0^\infty { e^{-x} \ln^2 x }\,dx = \gamma^2 + \frac{\pi^2}{6} .

Kaksoisintegraali gammalle on

 \gamma = \int_{0}^{1}\int_{0}^{1} \frac{x-1}{(1-x\,y)\ln(x\,y)} \, dx\,dy = \sum_{n=1}^\infty \left ( \frac{1}{n}-\ln\frac{n+1}{n} \right ).

Vertaa

 \ln \left ( \frac{4}{\pi} \right ) = \int_{0}^{1}\int_{0}^{1} \frac{x-1}{(1+x\,y)\ln(x\,y)} \, dx\,dy = \sum_{n=1}^\infty (-1)^{n-1} \left( \frac{1}{n}-\ln\frac{n+1}{n} \right).

Catalan löysi integraalin

 \gamma = \int_0^1 \frac{1}{1+x} \sum_{n=1}^\infty x^{2^n-1} \, dx.

Äärettömiä sarjoja[muokkaa | muokkaa wikitekstiä]

Euler todisti kaavan

\gamma = \sum_{k=1}^\infty \left[ \frac{1}{k} - \ln \left( 1 + \frac{1}{k} \right) \right].

Toinen kaava on

 \gamma = 1 - \sum_{k=2}^{\infty}(-1)^k\frac{\lfloor\log_2 k\rfloor}{k+1} .

Vacca on todistanut kaavat

{
 \gamma = \sum_{k=2}^\infty (-1)^k \frac{ \left \lfloor \log_2 k \right \rfloor}{k}
  = \frac12-\frac13
  + 2\left(\frac14 - \frac15 + \frac16 - \frac17\right)
  + 3\left(\frac18 - \frac19 + \frac1{10} - \frac1{11} + \dots - \frac1{15}\right) + \dots
}
{\gamma + \zeta(2) = \sum_{k=2}^\infty\left(\frac1{\lfloor \sqrt{k} \rfloor^2} - \frac1{k}\right) = \sum_{k=2}^{\infty} \frac{k - \lfloor\sqrt{k}\rfloor^2}{k\lfloor\sqrt{k}\rfloor^2} = \frac12 + \frac23 + \frac1{2^2} \sum_{k=1}^{2 \times 2} \frac k {k+2^2} + \frac1{3^2} \sum_{k=1}^{3 \times 2} \frac k {k+3^2} + \dots} .

Toinen kaava on

 \gamma = \ln\pi - 4\ln\Gamma(\tfrac34) + \frac4{\pi}\sum_{k=1}^{\infty}(-1)^{k+1}\frac{\ln(2k+1)}{2k+1}.

Äärettömiä tuloja[muokkaa | muokkaa wikitekstiä]

 \frac{e^{1+\gamma /2}}{\sqrt{2\,\pi}} = \prod_{n=1}^\infty e^{-1+1/(2\,n)}\,\left (1+\frac{1}{n} \right )^n
 \frac{e^{3+2\gamma}}{2\, \pi} = \prod_{n=1}^\infty e^{-2+2/n}\,\left (1+\frac{2}{n} \right )^n.
 e^{\gamma} = \left ( \frac{2}{1} \right )^{1/2} \left (\frac{2^2}{1 \cdot 3} \right )^{1/3} \left (\frac{2^3 \cdot 4}{1 \cdot 3^3} \right )^{1/4}
\left (\frac{2^4 \cdot 4^4}{1 \cdot 3^6 \cdot 5} \right )^{1/5} \cdots .

Lähteet[muokkaa | muokkaa wikitekstiä]

  1. http://media.www.dailynorthwestern.com/media/storage/paper853/news/2007/03/02/Campus/Student.Sets.World.Record.For.Math.Constant.Calculation-2754519.shtml