Siirry sisältöön

Laajennettu reaalilukujoukko

Wikipediasta
Tämä on arkistoitu versio sivusta sellaisena, kuin se oli 9. heinäkuuta 2019 kello 14.42 käyttäjän Putsari (keskustelu | muokkaukset) muokkauksen jälkeen. Sivu saattaa erota merkittävästi tuoreimmasta versiosta.
Ylin reaalilukusuora on laajennettu siten, että mukaan on otettu luvut ja ja ne ovat lukusuoran päätepistetitä. Alempi kuvio liittyy toiseenn laajennustulkintaan.

Laajennettu reaalilukujoukko on lukujoukko, joka saadaan lisäämällä reaalilukujoukkoon kaksi uutta elementtiä: positiivinen äärettömyys +∞ eli ∞ ja negatiivinen äärettömyys −∞. [1] [2] Laajennettua reaalilukujoukkoa voidaan merkitä symbolilla tai välinä [−∞, +∞]. Laajennetun reaalilukujoukon geometrinen vastine on laajennettu lukusuora, jossa ajatellaan tavallisen lukusuoran kumpaankin päähän lisätyksi yksi äärettömän kaukainen piste.

Laajennettu reaalilukujoukko on tarpeellinen erityisesti raja-arvotarkasteluissa ja mittateorian sovelluksissa.

Laskutoimitukset

Tavalliset reaalilukujen laskutoimitukset voidaan osittain ottaa käyttöön myös laajennetussa reaalilukujoukossa.

Näissä määrittelyissä a + ∞ on sekä a + (+∞) että a − (−∞), ja vastaavasti a − ∞ on sekä a − (+∞) että a + (−∞).

Sen sijaan ∞−∞, ±∞ ÷ ±∞, (±∞)0, 0±∞, 1±∞ ja (−∞)±∞ ei tavallisesti ole määritelty. Raja-arvolaskennassa määrittämätön 0 * ±∞ taas määritetään todennäköisyyslaskennassa ja mittateoriassa tavallisesti nollaksi.

Lähteet

  1. Metsänkylä, Tauno & Näätänen, Marjatta: Algebra s. 143 matematiikkalehtisolmu.fi. 2010. Viitattu 8.7.2019.
  2. Suominen, Kalevi & Vala, Klaus: Topologia, s. 86. Gaudeamus, 1965. ISBN 951-662-050-7

Kirjallisuutta

Tämä matematiikkaan liittyvä artikkeli on tynkä. Voit auttaa Wikipediaa laajentamalla artikkelia.