Lagrangen interpolaatiopolynomi

Wikipedia
Loikkaa: valikkoon, hakuun

Numeerisessa analyysissä Lagrangen interpolaatiopolynomi on polynomimuotoinen funktio, joka kulkee annettujen pisteiden kautta. Polynomi on nimetty Joseph-Louis Lagrangen mukaan, vaikka sen keksi ensimmäisenä Edward Waring vuonna 1779 ja myöhemmin Leonhard Euler vuonna 1783.

Kuva osoittaa neljälle pisteelle ((−9, 5), (−4, 2), (−1, −2), (7, 9)) kolmannen asteen interpolaatiopolynomin L(x), joka on summa skaalattuja kantapolynomeja y0l0(x), y1l1(x), y2l2(x) ja y3l3(x). Interpolaatiopolynomi kulkee kaikkien neljän pisteen kautta ja jokainen kantapolynomi kulkee kiinnitetyn pisteen kautta ja saa arvon nolla kun x saa jonkin muun kiinnitetyn pisteen arvon.

Määritelmä[muokkaa | muokkaa wikitekstiä]

Olkoon annettu joukko k + 1 havaintoja

(x_0, y_0),\ldots,(x_k, y_k),

missä kaikki xj:t ovat keskenään erisuuria. Tällöin Lagrangen interpolaatiopolynomi on lineaarikombinaatio

L(x) := \sum_{j=0}^{k} y_j \ell_j(x)

Lagrangen kantapolynomeja

\ell_j(x) := \prod_{{i=0}\atop {j\neq i}}^{k} \frac{x-x_i}{x_j-x_i} = \frac{x-x_0}{x_j-x_0} \cdots \frac{x-x_{j-1}}{x_j-x_{j-1}} \frac{x-x_{j+1}}{x_j-x_{j+1}} \cdots \frac{x-x_{k}}{x_j-x_{k}}.

Todistus[muokkaa | muokkaa wikitekstiä]

Hakemamme funktio on astetta k oleva polynomifunktio L(x), jolle

L(x_j) = y_j \qquad j=0,\ldots,k

Stonen–Weierstrassin lauseen mukaan tällainen funktio on olemassa ja yksikäsitteinen. Lagrangen polynomi on ratkaisu kyseiseen interpolaatio-ongelmaan.

Kuten helposti nähdään,

  1. \ell_j(x) on astetta k oleva polynomi.
  2. \ell_i(x_j) = \delta_{ij},\quad 0 \leq i,j \leq k.\,

Siten funktio L(x) on astetta k oleva polynomi ja

L(x_i) = \sum_{j=0}^{k} y_j \ell_j(x_i) = y_i.

Siten L(x) on hakemamme yksikäsitteinen interpolaatiopolynomi.

Polynomin idea[muokkaa | muokkaa wikitekstiä]

Interpolaatio-ongelman ratkaisu johtaa lineaariseen matriisimuotoiseen yhtälöön. Valitsemalla interpolaatiopolynomin kannaksi monomit saadaan usein hyvin monimutkainen Vandermonden matriisi. Sen sijaan valitsemalla kannaksi Lagrangen kannan päädymme paljon yksinkertaisempaan yksikkömatriisiin, jonka ratkaisu voidaan lukea välittömästi suoraan matriisista.

Käyttö[muokkaa | muokkaa wikitekstiä]

Esimerkki[muokkaa | muokkaa wikitekstiä]

Tangenttifunktio ja sen interpolaatio.

Haluamme interpoloida funktiota f(x)=\tan{x} pisteissä

x_0=-1.5 f(x_0)=-14.1014
x_1=-0.75 f(x_1)=-0.931596
x_2=0 f(x_2)=0
x_3=0.75 f(x_3)=0.931596
x_4=1.5 f(x_4)=14.1014

Nyt kantapolynomeiksi saadaan:

\ell_0(x)={x - x_1 \over x_0 - x_1}\cdot{x - x_2 \over x_0 - x_2}\cdot{x - x_3 \over x_0 - x_3}\cdot{x - x_4 \over x_0 - x_4}
             ={1\over 243} x (2x-3)(4x-3)(4x+3)
\ell_1(x)={x - x_0 \over x_1 - x_0}\cdot{x - x_2 \over x_1 - x_2}\cdot{x - x_3 \over x_1 - x_3}\cdot{x - x_4 \over x_1 - x_4}
             =-{8\over 243} x (2x-3)(2x+3)(4x-3)
\ell_2(x)={x - x_0 \over x_2 - x_0}\cdot{x - x_1 \over x_2 - x_1}\cdot{x - x_3 \over x_2 - x_3}\cdot{x - x_4 \over x_2 - x_4}
             ={1\over 243} (243-540x^2+192x^4)
\ell_3(x)={x - x_0 \over x_3 - x_0}\cdot{x - x_1 \over x_3 - x_1}\cdot{x - x_2 \over x_3 - x_2}\cdot{x - x_4 \over x_3 - x_4}
             =-{8\over 243} x (2x-3)(2x+3)(4x+3)
\ell_4(x)={x - x_0 \over x_4 - x_0}\cdot{x - x_1 \over x_4 - x_1}\cdot{x - x_2 \over x_4 - x_2}\cdot{x - x_3 \over x_4 - x_3}
             ={1\over 243} x (2x+3)(4x-3)(4x+3)

Siten interpolaatiopolynomi on

{1\over 243}\Big(f(x_0)x (2x-3)(4x-3)(4x+3)-8f(x_1)x (2x-3)(2x+3)(4x-3)
+f(x_2)(243-540x^2+192x^4)-8f(x_3)x (2x-3)(2x+3)(4x+3) \,
+f(x_4)x (2x+3)(4x-3)(4x+3)\Big)\,
=-1.47748x+4.83456x^3.\,

Huomaa[muokkaa | muokkaa wikitekstiä]

Lagrangen polynomi osoittaa sen, että polynomi saadaan aina kulkemaan annettujen pisteiden kautta, ja että tämä polynomi on yksikäsitteinen pienintä mahdollista astetta oleva kiinnitettyjen pisteiden kautta kulkeva polynomi. Kuitenkin jos solmut xk vaihtuvat, joudutaan kaikki Lagrangen kantapolynomit laskemaan uudelleen. Käytännön laskuissa on parempi käyttää Newtonin polynomeja.

Lagrangen- ja muut interpolaatiopolynomit oskilloivat kiinnitettyjen arvojen välillä. Oskillointia voidaan pienentää kun interpolointipisteiksi valitaan Tšebyševin solmut.

Lagrangen kantapolynomeja käytetään numeerisessa integroinnissa johtamaan Newtonin–Cotesin kaavat.

Lagrangen interpolaatiota käytetään paljon äänen digitaalisessa signaalinkäsittelyssä määrittämään FIR-filtterit.