Kunta (matematiikka)

Wikipedia
Loikkaa: valikkoon, hakuun

Kunta (engl. field) matematiikassa on epäformaalisti sanottuna joukko, johon on määritelty neljä peruslaskutoimitusta siten, että laskutoimitukset noudattavat tavallisia laskulakeja, ja laskutoimitusten tulos kuuluu samaan joukkoon. Esimerkiksi rationaaliluvut muodostavat kunnan, mutta kokonaisluvut eivät, koska jakolaskun tulos ei ole välttämättä kokonaisluku. Kuntia tutkiva matematiikan ala on algebra.

Formaali määritelmä[muokkaa | muokkaa wikitekstiä]

Joukko K(+,\cdot) on kunta, jos se täyttää seuraavat ehdot:

  1. Kaikilla x, y on x+(y+z)=(x+y)+z (summan liitäntälaki)
  2. K:ssa on nolla-alkio 0 niin, että kaikilla x on x+0=x (summan neutraalialkio)
  3. Kaikilla x on K:ssa vasta-alkio -x siten, että x+(-x)=0
  4. Kaikilla x, y on x + y = y + x (summan vaihdantalaki)
  5. Kaikilla x, y on x \cdot (y + z) = x \cdot y + x \cdot z (osittelulaki 1)
  6. Kaikilla x, y, z on x \cdot (y \cdot z) = (x \cdot y) \cdot z (tulon liitäntälaki)
  7. K:ssa on ykkösalkio 1 siten, että kaikilla x on 1 \cdot x = x (tulon neutraalialkio)
  8. Kaikilla x paitsi 0:lla on K:ssa käänteisalkio x^{-1} siten, että x \cdot x^{-1} = 1 (tulon käänteisalkio)
  9. Kaikilla x, y on x \cdot y = y \cdot x (tulon vaihdantalaki)

Määritelmässä siis käytetään kahta laskutoimitusta. Vähennyslasku voidaan määritellä summan ja vasta-alkion avulla, x-y=x+(-y), ja jakolasku vastaavasti tulon ja käänteisalkion avulla.

Toisella tavalla sanoen kunta on kommutatiivinen rengas joka sisältää kaikkien alkioidensa a\ne0 käänteisalkiot.

Tunnetuimmat kunnat ovat rationaaliluvut \mathbb Q, reaaliluvut \mathbb R ja kompleksiluvut \mathbb C. Reaaliluvut ovat rationaalilukujen kuntalaajennus ja kompleksiluvut reaalilukujen kuntalaajennus, mutta kaikki kunnat eivät muodosta samanlaista laajennusten jonoa. Esimerkiksi gaussin rationaalit, eli kompleksiluvut joiden reaali- ja imaginääriosat ovat rationaalilukuja, muodostavat kunnan. Gaussin rationaalit ja reaaliluvut eivät ole kumpikaan toisensa kuntalaajennuksia.

Muita äärettömiä kuntia ovat esimerkiksi algebralliset lukukunnat \mathbf Q(\mu), kaikkien algebrallisten lukujen kunta \mathbb A, ja polynomien osamäärät eli rationaalifunktiot.

Äärellinen kunta syntyy yksinkertaisimmin siten, että joukoksi valitaan kokonaisluvut 0, 1, 2, \ldots, p-1, jossa p on alkuluku, ja yhteenlasku ja kertolasku määritellään s.e. tuloksesta otetaan jakojäännös luvulla p.

Vaikka nimitykset (yhteenlasku, kertolasku, summa, tulo) antavat mielikuvan, että kunnassa pelataan luvuilla, niin näin ei välttämättä ole − alkiot voivat olla muitakin käsitteitä kuin lukuja. Nollalla merkityn alkion 0 ei senkään tarvitse olla "oikea nolla", vaan se on vain yhteenlaskussa vaikuttamaton alkio (yhteenlaskun neutraalialkio); samaten on ykkösellä merkitty 1 vain kertolaskussa vaikuttamaton alkio(kertolaskun neutraalialkio).

Joitakin kuntia koskevia perustuloksia[muokkaa | muokkaa wikitekstiä]

  • Kunnan F nollasta eroavat alkiot (merkitään yleensä F×) on Abelin ryhmä kertolaskun suhteen. Jokainen F×:n äärellinen aliryhmä on syklinen.
  • Kunta on rengas jolla ei ole muita ideaaleja kuin {0} ja kunta itse.
  • Jokaiselle kunnalle F on olemassa isomorfiaa vaille yksikäsitteinen kunta G jonka alikunta F on, kaikki F:n alkiot ovat algebrallisia G:ssä ja G on algebrallisesti suljettu. Tällöin G:tä kutsutaan F:n algebralliseksi laajennukseksi.

Katso myös[muokkaa | muokkaa wikitekstiä]